ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divelunit Unicode version

Theorem divelunit 10198
Description: A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
divelunit  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  ( 0 [,] 1
)  <->  A  <_  B ) )

Proof of Theorem divelunit
StepHypRef Expression
1 0re 8146 . . . 4  |-  0  e.  RR
2 1re 8145 . . . 4  |-  1  e.  RR
31, 2elicc2i 10135 . . 3  |-  ( ( A  /  B )  e.  ( 0 [,] 1 )  <->  ( ( A  /  B )  e.  RR  /\  0  <_ 
( A  /  B
)  /\  ( A  /  B )  <_  1
) )
4 df-3an 1004 . . 3  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B )  /\  ( A  /  B )  <_ 
1 )  <->  ( (
( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 ) )
53, 4bitri 184 . 2  |-  ( ( A  /  B )  e.  ( 0 [,] 1 )  <->  ( (
( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 ) )
6 ledivmul 9024 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <_  1  <->  A  <_  ( B  x.  1 ) ) )
72, 6mp3an2 1359 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  A  <_  ( B  x.  1 ) ) )
87adantlr 477 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  A  <_  ( B  x.  1 ) ) )
9 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  e.  RR )
10 simprl 529 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  RR )
11 gt0ap0 8773 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B #  0 )
1211adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B #  0
)
139, 10, 12redivclapd 8982 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  /  B )  e.  RR )
14 divge0 9020 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
1513, 14jca 306 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  RR  /\  0  <_ 
( A  /  B
) ) )
1615biantrurd 305 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  ( ( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B
) )  /\  ( A  /  B )  <_ 
1 ) ) )
17 recn 8132 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
1817ad2antrl 490 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  CC )
1918mulridd 8163 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( B  x.  1 )  =  B )
2019breq2d 4095 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( B  x.  1 )  <->  A  <_  B ) )
218, 16, 203bitr3d 218 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( (
( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 )  <-> 
A  <_  B )
)
225, 21bitrid 192 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  ( 0 [,] 1
)  <->  A  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    e. wcel 2200   class class class wbr 4083  (class class class)co 6001   CCcc 7997   RRcr 7998   0cc0 7999   1c1 8000    x. cmul 8004    < clt 8181    <_ cle 8182   # cap 8728    / cdiv 8819   [,]cicc 10087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-icc 10091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator