ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divelunit Unicode version

Theorem divelunit 9938
Description: A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
divelunit  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  ( 0 [,] 1
)  <->  A  <_  B ) )

Proof of Theorem divelunit
StepHypRef Expression
1 0re 7899 . . . 4  |-  0  e.  RR
2 1re 7898 . . . 4  |-  1  e.  RR
31, 2elicc2i 9875 . . 3  |-  ( ( A  /  B )  e.  ( 0 [,] 1 )  <->  ( ( A  /  B )  e.  RR  /\  0  <_ 
( A  /  B
)  /\  ( A  /  B )  <_  1
) )
4 df-3an 970 . . 3  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B )  /\  ( A  /  B )  <_ 
1 )  <->  ( (
( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 ) )
53, 4bitri 183 . 2  |-  ( ( A  /  B )  e.  ( 0 [,] 1 )  <->  ( (
( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 ) )
6 ledivmul 8772 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <_  1  <->  A  <_  ( B  x.  1 ) ) )
72, 6mp3an2 1315 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  A  <_  ( B  x.  1 ) ) )
87adantlr 469 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  A  <_  ( B  x.  1 ) ) )
9 simpll 519 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  e.  RR )
10 simprl 521 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  RR )
11 gt0ap0 8524 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B #  0 )
1211adantl 275 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B #  0
)
139, 10, 12redivclapd 8731 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  /  B )  e.  RR )
14 divge0 8768 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
1513, 14jca 304 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  RR  /\  0  <_ 
( A  /  B
) ) )
1615biantrurd 303 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  ( ( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B
) )  /\  ( A  /  B )  <_ 
1 ) ) )
17 recn 7886 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
1817ad2antrl 482 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  CC )
1918mulid1d 7916 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( B  x.  1 )  =  B )
2019breq2d 3994 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( B  x.  1 )  <->  A  <_  B ) )
218, 16, 203bitr3d 217 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( (
( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 )  <-> 
A  <_  B )
)
225, 21syl5bb 191 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  ( 0 [,] 1
)  <->  A  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    e. wcel 2136   class class class wbr 3982  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    <_ cle 7934   # cap 8479    / cdiv 8568   [,]cicc 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-icc 9831
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator