ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divelunit Unicode version

Theorem divelunit 10124
Description: A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
Assertion
Ref Expression
divelunit  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  ( 0 [,] 1
)  <->  A  <_  B ) )

Proof of Theorem divelunit
StepHypRef Expression
1 0re 8072 . . . 4  |-  0  e.  RR
2 1re 8071 . . . 4  |-  1  e.  RR
31, 2elicc2i 10061 . . 3  |-  ( ( A  /  B )  e.  ( 0 [,] 1 )  <->  ( ( A  /  B )  e.  RR  /\  0  <_ 
( A  /  B
)  /\  ( A  /  B )  <_  1
) )
4 df-3an 983 . . 3  |-  ( ( ( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B )  /\  ( A  /  B )  <_ 
1 )  <->  ( (
( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 ) )
53, 4bitri 184 . 2  |-  ( ( A  /  B )  e.  ( 0 [,] 1 )  <->  ( (
( A  /  B
)  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 ) )
6 ledivmul 8950 . . . . 5  |-  ( ( A  e.  RR  /\  1  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  -> 
( ( A  /  B )  <_  1  <->  A  <_  ( B  x.  1 ) ) )
72, 6mp3an2 1338 . . . 4  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  A  <_  ( B  x.  1 ) ) )
87adantlr 477 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  A  <_  ( B  x.  1 ) ) )
9 simpll 527 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  A  e.  RR )
10 simprl 529 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  RR )
11 gt0ap0 8699 . . . . . . 7  |-  ( ( B  e.  RR  /\  0  <  B )  ->  B #  0 )
1211adantl 277 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B #  0
)
139, 10, 12redivclapd 8908 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  /  B )  e.  RR )
14 divge0 8946 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  0  <_  ( A  /  B ) )
1513, 14jca 306 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  RR  /\  0  <_ 
( A  /  B
) ) )
1615biantrurd 305 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  <_ 
1  <->  ( ( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B
) )  /\  ( A  /  B )  <_ 
1 ) ) )
17 recn 8058 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
1817ad2antrl 490 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  B  e.  CC )
1918mulridd 8089 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( B  x.  1 )  =  B )
2019breq2d 4056 . . 3  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( A  <_  ( B  x.  1 )  <->  A  <_  B ) )
218, 16, 203bitr3d 218 . 2  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( (
( ( A  /  B )  e.  RR  /\  0  <_  ( A  /  B ) )  /\  ( A  /  B
)  <_  1 )  <-> 
A  <_  B )
)
225, 21bitrid 192 1  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  ( 0 [,] 1
)  <->  A  <_  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    e. wcel 2176   class class class wbr 4044  (class class class)co 5944   CCcc 7923   RRcr 7924   0cc0 7925   1c1 7926    x. cmul 7930    < clt 8107    <_ cle 8108   # cap 8654    / cdiv 8745   [,]cicc 10013
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-icc 10017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator