| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divelunit | Unicode version | ||
| Description: A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| divelunit |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re 8028 |
. . . 4
| |
| 2 | 1re 8027 |
. . . 4
| |
| 3 | 1, 2 | elicc2i 10016 |
. . 3
|
| 4 | df-3an 982 |
. . 3
| |
| 5 | 3, 4 | bitri 184 |
. 2
|
| 6 | ledivmul 8906 |
. . . . 5
| |
| 7 | 2, 6 | mp3an2 1336 |
. . . 4
|
| 8 | 7 | adantlr 477 |
. . 3
|
| 9 | simpll 527 |
. . . . . 6
| |
| 10 | simprl 529 |
. . . . . 6
| |
| 11 | gt0ap0 8655 |
. . . . . . 7
| |
| 12 | 11 | adantl 277 |
. . . . . 6
|
| 13 | 9, 10, 12 | redivclapd 8864 |
. . . . 5
|
| 14 | divge0 8902 |
. . . . 5
| |
| 15 | 13, 14 | jca 306 |
. . . 4
|
| 16 | 15 | biantrurd 305 |
. . 3
|
| 17 | recn 8014 |
. . . . . 6
| |
| 18 | 17 | ad2antrl 490 |
. . . . 5
|
| 19 | 18 | mulridd 8045 |
. . . 4
|
| 20 | 19 | breq2d 4046 |
. . 3
|
| 21 | 8, 16, 20 | 3bitr3d 218 |
. 2
|
| 22 | 5, 21 | bitrid 192 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7972 ax-resscn 7973 ax-1cn 7974 ax-1re 7975 ax-icn 7976 ax-addcl 7977 ax-addrcl 7978 ax-mulcl 7979 ax-mulrcl 7980 ax-addcom 7981 ax-mulcom 7982 ax-addass 7983 ax-mulass 7984 ax-distr 7985 ax-i2m1 7986 ax-0lt1 7987 ax-1rid 7988 ax-0id 7989 ax-rnegex 7990 ax-precex 7991 ax-cnre 7992 ax-pre-ltirr 7993 ax-pre-ltwlin 7994 ax-pre-lttrn 7995 ax-pre-apti 7996 ax-pre-ltadd 7997 ax-pre-mulgt0 7998 ax-pre-mulext 7999 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8065 df-mnf 8066 df-xr 8067 df-ltxr 8068 df-le 8069 df-sub 8201 df-neg 8202 df-reap 8604 df-ap 8611 df-div 8702 df-icc 9972 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |