ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmod Unicode version

Theorem dvdsmod 11800
Description: Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 992 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  ZZ )
2 zq 9564 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
31, 2syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  QQ )
4 simpl2 991 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  NN )
5 nnq 9571 . . . . 5  |-  ( N  e.  NN  ->  N  e.  QQ )
64, 5syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  QQ )
74nngt0d 8901 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  <  N
)
8 modqval 10259 . . . 4  |-  ( ( K  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) ) )
93, 6, 7, 8syl3anc 1228 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) )
109breq2d 3994 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
11 simpl1 990 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  NN )
1211nnzd 9312 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  ZZ )
134nnzd 9312 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  ZZ )
14 znq 9562 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  N  e.  NN )  ->  ( K  /  N
)  e.  QQ )
151, 4, 14syl2anc 409 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  /  N )  e.  QQ )
1615flqcld 10212 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( |_ `  ( K  /  N
) )  e.  ZZ )
17 simpr 109 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  N
)
1812, 13, 16, 17dvdsmultr1d 11772 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  ( N  x.  ( |_ `  ( K  /  N
) ) ) )
1913, 16zmulcld 9319 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ )
2019zcnd 9314 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  CC )
2120subid1d 8198 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  - 
0 )  =  ( N  x.  ( |_
`  ( K  /  N ) ) ) )
2218, 21breqtrrd 4010 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) )
23 0zd 9203 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  e.  ZZ )
24 moddvds 11739 . . . . . 6  |-  ( ( P  e.  NN  /\  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  =  ( 0  mod 
P )  <->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) ) )
2511, 19, 23, 24syl3anc 1228 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  -  0 ) ) )
2622, 25mpbird 166 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  mod 
P )  =  ( 0  mod  P ) )
2726eqeq2d 2177 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
( K  mod  P
)  =  ( 0  mod  P ) ) )
28 moddvds 11739 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  ( N  x.  ( |_ `  ( K  /  N
) ) )  e.  ZZ )  ->  (
( K  mod  P
)  =  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  <->  P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
2911, 1, 19, 28syl3anc 1228 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
30 moddvds 11739 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  0  e.  ZZ )  ->  (
( K  mod  P
)  =  ( 0  mod  P )  <->  P  ||  ( K  -  0 ) ) )
3111, 1, 23, 30syl3anc 1228 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( K  -  0 ) ) )
3227, 29, 313bitr3d 217 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) )  <-> 
P  ||  ( K  -  0 ) ) )
331zcnd 9314 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  CC )
3433subid1d 8198 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  - 
0 )  =  K )
3534breq2d 3994 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  0
)  <->  P  ||  K ) )
3610, 32, 353bitrd 213 1  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   0cc0 7753    x. cmul 7758    < clt 7933    - cmin 8069    / cdiv 8568   NNcn 8857   ZZcz 9191   QQcq 9557   |_cfl 10203    mod cmo 10257    || cdvds 11727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872
This theorem depends on definitions:  df-bi 116  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-po 4274  df-iso 4275  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-q 9558  df-rp 9590  df-fl 10205  df-mod 10258  df-dvds 11728
This theorem is referenced by:  lgsdir2lem2  13570
  Copyright terms: Public domain W3C validator