ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmod Unicode version

Theorem dvdsmod 11822
Description: Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 997 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  ZZ )
2 zq 9585 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
31, 2syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  QQ )
4 simpl2 996 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  NN )
5 nnq 9592 . . . . 5  |-  ( N  e.  NN  ->  N  e.  QQ )
64, 5syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  QQ )
74nngt0d 8922 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  <  N
)
8 modqval 10280 . . . 4  |-  ( ( K  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) ) )
93, 6, 7, 8syl3anc 1233 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) )
109breq2d 4001 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
11 simpl1 995 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  NN )
1211nnzd 9333 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  ZZ )
134nnzd 9333 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  ZZ )
14 znq 9583 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  N  e.  NN )  ->  ( K  /  N
)  e.  QQ )
151, 4, 14syl2anc 409 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  /  N )  e.  QQ )
1615flqcld 10233 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( |_ `  ( K  /  N
) )  e.  ZZ )
17 simpr 109 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  N
)
1812, 13, 16, 17dvdsmultr1d 11794 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  ( N  x.  ( |_ `  ( K  /  N
) ) ) )
1913, 16zmulcld 9340 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ )
2019zcnd 9335 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  CC )
2120subid1d 8219 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  - 
0 )  =  ( N  x.  ( |_
`  ( K  /  N ) ) ) )
2218, 21breqtrrd 4017 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) )
23 0zd 9224 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  e.  ZZ )
24 moddvds 11761 . . . . . 6  |-  ( ( P  e.  NN  /\  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  =  ( 0  mod 
P )  <->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) ) )
2511, 19, 23, 24syl3anc 1233 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  -  0 ) ) )
2622, 25mpbird 166 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  mod 
P )  =  ( 0  mod  P ) )
2726eqeq2d 2182 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
( K  mod  P
)  =  ( 0  mod  P ) ) )
28 moddvds 11761 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  ( N  x.  ( |_ `  ( K  /  N
) ) )  e.  ZZ )  ->  (
( K  mod  P
)  =  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  <->  P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
2911, 1, 19, 28syl3anc 1233 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
30 moddvds 11761 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  0  e.  ZZ )  ->  (
( K  mod  P
)  =  ( 0  mod  P )  <->  P  ||  ( K  -  0 ) ) )
3111, 1, 23, 30syl3anc 1233 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( K  -  0 ) ) )
3227, 29, 313bitr3d 217 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) )  <-> 
P  ||  ( K  -  0 ) ) )
331zcnd 9335 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  CC )
3433subid1d 8219 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  - 
0 )  =  K )
3534breq2d 4001 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  0
)  <->  P  ||  K ) )
3610, 32, 353bitrd 213 1  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 973    = wceq 1348    e. wcel 2141   class class class wbr 3989   ` cfv 5198  (class class class)co 5853   0cc0 7774    x. cmul 7779    < clt 7954    - cmin 8090    / cdiv 8589   NNcn 8878   ZZcz 9212   QQcq 9578   |_cfl 10224    mod cmo 10278    || cdvds 11749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892  ax-arch 7893
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-q 9579  df-rp 9611  df-fl 10226  df-mod 10279  df-dvds 11750
This theorem is referenced by:  lgsdir2lem2  13724
  Copyright terms: Public domain W3C validator