ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsmod Unicode version

Theorem dvdsmod 12044
Description: Any number  K whose mod base  N is divisible by a divisor  P of the base is also divisible by 
P. This means that primes will also be relatively prime to the base when reduced  mod 
N for any base. (Contributed by Mario Carneiro, 13-Mar-2014.)
Assertion
Ref Expression
dvdsmod  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)

Proof of Theorem dvdsmod
StepHypRef Expression
1 simpl3 1004 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  ZZ )
2 zq 9717 . . . . 5  |-  ( K  e.  ZZ  ->  K  e.  QQ )
31, 2syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  QQ )
4 simpl2 1003 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  NN )
5 nnq 9724 . . . . 5  |-  ( N  e.  NN  ->  N  e.  QQ )
64, 5syl 14 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  QQ )
74nngt0d 9051 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  <  N
)
8 modqval 10433 . . . 4  |-  ( ( K  e.  QQ  /\  N  e.  QQ  /\  0  <  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) ) )
93, 6, 7, 8syl3anc 1249 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  mod  N )  =  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) )
109breq2d 4046 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
11 simpl1 1002 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  NN )
1211nnzd 9464 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  e.  ZZ )
134nnzd 9464 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  N  e.  ZZ )
14 znq 9715 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  N  e.  NN )  ->  ( K  /  N
)  e.  QQ )
151, 4, 14syl2anc 411 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  /  N )  e.  QQ )
1615flqcld 10384 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( |_ `  ( K  /  N
) )  e.  ZZ )
17 simpr 110 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  N
)
1812, 13, 16, 17dvdsmultr1d 12014 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  ( N  x.  ( |_ `  ( K  /  N
) ) ) )
1913, 16zmulcld 9471 . . . . . . . 8  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ )
2019zcnd 9466 . . . . . . 7  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  CC )
2120subid1d 8343 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  - 
0 )  =  ( N  x.  ( |_
`  ( K  /  N ) ) ) )
2218, 21breqtrrd 4062 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) )
23 0zd 9355 . . . . . 6  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  0  e.  ZZ )
24 moddvds 11981 . . . . . 6  |-  ( ( P  e.  NN  /\  ( N  x.  ( |_ `  ( K  /  N ) ) )  e.  ZZ  /\  0  e.  ZZ )  ->  (
( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  =  ( 0  mod 
P )  <->  P  ||  (
( N  x.  ( |_ `  ( K  /  N ) ) )  -  0 ) ) )
2511, 19, 23, 24syl3anc 1249 . . . . 5  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  -  0 ) ) )
2622, 25mpbird 167 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( N  x.  ( |_ `  ( K  /  N
) ) )  mod 
P )  =  ( 0  mod  P ) )
2726eqeq2d 2208 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
( K  mod  P
)  =  ( 0  mod  P ) ) )
28 moddvds 11981 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  ( N  x.  ( |_ `  ( K  /  N
) ) )  e.  ZZ )  ->  (
( K  mod  P
)  =  ( ( N  x.  ( |_
`  ( K  /  N ) ) )  mod  P )  <->  P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
2911, 1, 19, 28syl3anc 1249 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( ( N  x.  ( |_ `  ( K  /  N ) ) )  mod  P )  <-> 
P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N ) ) ) ) ) )
30 moddvds 11981 . . . 4  |-  ( ( P  e.  NN  /\  K  e.  ZZ  /\  0  e.  ZZ )  ->  (
( K  mod  P
)  =  ( 0  mod  P )  <->  P  ||  ( K  -  0 ) ) )
3111, 1, 23, 30syl3anc 1249 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( ( K  mod  P )  =  ( 0  mod  P
)  <->  P  ||  ( K  -  0 ) ) )
3227, 29, 313bitr3d 218 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  ( N  x.  ( |_ `  ( K  /  N
) ) ) )  <-> 
P  ||  ( K  -  0 ) ) )
331zcnd 9466 . . . 4  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  K  e.  CC )
3433subid1d 8343 . . 3  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( K  - 
0 )  =  K )
3534breq2d 4046 . 2  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  -  0
)  <->  P  ||  K ) )
3610, 32, 353bitrd 214 1  |-  ( ( ( P  e.  NN  /\  N  e.  NN  /\  K  e.  ZZ )  /\  P  ||  N )  ->  ( P  ||  ( K  mod  N )  <-> 
P  ||  K )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   0cc0 7896    x. cmul 7901    < clt 8078    - cmin 8214    / cdiv 8716   NNcn 9007   ZZcz 9343   QQcq 9710   |_cfl 10375    mod cmo 10431    || cdvds 11969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-n0 9267  df-z 9344  df-q 9711  df-rp 9746  df-fl 10377  df-mod 10432  df-dvds 11970
This theorem is referenced by:  lgsdir2lem2  15354
  Copyright terms: Public domain W3C validator