ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmet Unicode version

Theorem cnmet 14850
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
cnmet  |-  ( abs 
o.  -  )  e.  ( Met `  CC )

Proof of Theorem cnmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 8020 . 2  |-  CC  e.  _V
2 absf 11292 . . 3  |-  abs : CC
--> RR
3 subf 8245 . . 3  |-  -  :
( CC  X.  CC )
--> CC
4 fco 5426 . . 3  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
52, 3, 4mp2an 426 . 2  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
6 subcl 8242 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
76abs00ad 11247 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x  -  y )  =  0 ) )
8 eqid 2196 . . . . . 6  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 14849 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
109eqcomd 2202 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  -  y ) )  =  ( x ( abs  o.  -  ) y ) )
1110eqeq1d 2205 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x ( abs  o.  -  ) y )  =  0 ) )
12 subeq0 8269 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
137, 11, 123bitr3d 218 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  =  0  <-> 
x  =  y ) )
14 abs3dif 11287 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) ) )
15 abssub 11283 . . . . . 6  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( abs `  (
x  -  z ) )  =  ( abs `  ( z  -  x
) ) )
1615oveq1d 5940 . . . . 5  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
17163adant2 1018 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1814, 17breqtrd 4060 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1993adant3 1019 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  =  ( abs `  (
x  -  y ) ) )
208cnmetdval 14849 . . . . . 6  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z ( abs 
o.  -  ) x
)  =  ( abs `  ( z  -  x
) ) )
21203adant3 1019 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) x )  =  ( abs `  (
z  -  x ) ) )
228cnmetdval 14849 . . . . . 6  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( z ( abs 
o.  -  ) y
)  =  ( abs `  ( z  -  y
) ) )
23223adant2 1018 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) y )  =  ( abs `  (
z  -  y ) ) )
2421, 23oveq12d 5943 . . . 4  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
25243coml 1212 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
2618, 19, 253brtr4d 4066 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  <_  ( ( z ( abs  o.  -  ) x )  +  ( z ( abs 
o.  -  ) y
) ) )
271, 5, 13, 26ismeti 14666 1  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167    X. cxp 4662    o. ccom 4668   -->wf 5255   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895   0cc0 7896    + caddc 7899    <_ cle 8079    - cmin 8214   abscabs 11179   Metcmet 14169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-map 6718  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181  df-met 14177
This theorem is referenced by:  cnxmet  14851  cnfldms  14856  remet  14868
  Copyright terms: Public domain W3C validator