ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmet Unicode version

Theorem cnmet 13071
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
cnmet  |-  ( abs 
o.  -  )  e.  ( Met `  CC )

Proof of Theorem cnmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7868 . 2  |-  CC  e.  _V
2 absf 11038 . . 3  |-  abs : CC
--> RR
3 subf 8091 . . 3  |-  -  :
( CC  X.  CC )
--> CC
4 fco 5347 . . 3  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
52, 3, 4mp2an 423 . 2  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
6 subcl 8088 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
76abs00ad 10993 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x  -  y )  =  0 ) )
8 eqid 2164 . . . . . 6  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 13070 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
109eqcomd 2170 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  -  y ) )  =  ( x ( abs  o.  -  ) y ) )
1110eqeq1d 2173 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x ( abs  o.  -  ) y )  =  0 ) )
12 subeq0 8115 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
137, 11, 123bitr3d 217 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  =  0  <-> 
x  =  y ) )
14 abs3dif 11033 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) ) )
15 abssub 11029 . . . . . 6  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( abs `  (
x  -  z ) )  =  ( abs `  ( z  -  x
) ) )
1615oveq1d 5851 . . . . 5  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
17163adant2 1005 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1814, 17breqtrd 4002 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1993adant3 1006 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  =  ( abs `  (
x  -  y ) ) )
208cnmetdval 13070 . . . . . 6  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z ( abs 
o.  -  ) x
)  =  ( abs `  ( z  -  x
) ) )
21203adant3 1006 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) x )  =  ( abs `  (
z  -  x ) ) )
228cnmetdval 13070 . . . . . 6  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( z ( abs 
o.  -  ) y
)  =  ( abs `  ( z  -  y
) ) )
23223adant2 1005 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) y )  =  ( abs `  (
z  -  y ) ) )
2421, 23oveq12d 5854 . . . 4  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
25243coml 1199 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
2618, 19, 253brtr4d 4008 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  <_  ( ( z ( abs  o.  -  ) x )  +  ( z ( abs 
o.  -  ) y
) ) )
271, 5, 13, 26ismeti 12887 1  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 967    = wceq 1342    e. wcel 2135    X. cxp 4596    o. ccom 4602   -->wf 5178   ` cfv 5182  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744    + caddc 7747    <_ cle 7925    - cmin 8060   abscabs 10925   Metcmet 12522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862  ax-arch 7863  ax-caucvg 7864
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-po 4268  df-iso 4269  df-iord 4338  df-on 4340  df-ilim 4341  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-1st 6100  df-2nd 6101  df-recs 6264  df-frec 6350  df-map 6607  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560  df-inn 8849  df-2 8907  df-3 8908  df-4 8909  df-n0 9106  df-z 9183  df-uz 9458  df-rp 9581  df-seqfrec 10371  df-exp 10445  df-cj 10770  df-re 10771  df-im 10772  df-rsqrt 10926  df-abs 10927  df-met 12530
This theorem is referenced by:  cnxmet  13072  remet  13081
  Copyright terms: Public domain W3C validator