ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmet Unicode version

Theorem cnmet 12736
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
cnmet  |-  ( abs 
o.  -  )  e.  ( Met `  CC )

Proof of Theorem cnmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7767 . 2  |-  CC  e.  _V
2 absf 10913 . . 3  |-  abs : CC
--> RR
3 subf 7987 . . 3  |-  -  :
( CC  X.  CC )
--> CC
4 fco 5295 . . 3  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
52, 3, 4mp2an 423 . 2  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
6 subcl 7984 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
76abs00ad 10868 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x  -  y )  =  0 ) )
8 eqid 2140 . . . . . 6  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 12735 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
109eqcomd 2146 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  -  y ) )  =  ( x ( abs  o.  -  ) y ) )
1110eqeq1d 2149 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x ( abs  o.  -  ) y )  =  0 ) )
12 subeq0 8011 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
137, 11, 123bitr3d 217 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  =  0  <-> 
x  =  y ) )
14 abs3dif 10908 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) ) )
15 abssub 10904 . . . . . 6  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( abs `  (
x  -  z ) )  =  ( abs `  ( z  -  x
) ) )
1615oveq1d 5796 . . . . 5  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
17163adant2 1001 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1814, 17breqtrd 3961 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1993adant3 1002 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  =  ( abs `  (
x  -  y ) ) )
208cnmetdval 12735 . . . . . 6  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z ( abs 
o.  -  ) x
)  =  ( abs `  ( z  -  x
) ) )
21203adant3 1002 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) x )  =  ( abs `  (
z  -  x ) ) )
228cnmetdval 12735 . . . . . 6  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( z ( abs 
o.  -  ) y
)  =  ( abs `  ( z  -  y
) ) )
23223adant2 1001 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) y )  =  ( abs `  (
z  -  y ) ) )
2421, 23oveq12d 5799 . . . 4  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
25243coml 1189 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
2618, 19, 253brtr4d 3967 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  <_  ( ( z ( abs  o.  -  ) x )  +  ( z ( abs 
o.  -  ) y
) ) )
271, 5, 13, 26ismeti 12552 1  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 963    = wceq 1332    e. wcel 1481    X. cxp 4544    o. ccom 4550   -->wf 5126   ` cfv 5130  (class class class)co 5781   CCcc 7641   RRcr 7642   0cc0 7643    + caddc 7646    <_ cle 7824    - cmin 7956   abscabs 10800   Metcmet 12187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4050  ax-sep 4053  ax-nul 4061  ax-pow 4105  ax-pr 4138  ax-un 4362  ax-setind 4459  ax-iinf 4509  ax-cnex 7734  ax-resscn 7735  ax-1cn 7736  ax-1re 7737  ax-icn 7738  ax-addcl 7739  ax-addrcl 7740  ax-mulcl 7741  ax-mulrcl 7742  ax-addcom 7743  ax-mulcom 7744  ax-addass 7745  ax-mulass 7746  ax-distr 7747  ax-i2m1 7748  ax-0lt1 7749  ax-1rid 7750  ax-0id 7751  ax-rnegex 7752  ax-precex 7753  ax-cnre 7754  ax-pre-ltirr 7755  ax-pre-ltwlin 7756  ax-pre-lttrn 7757  ax-pre-apti 7758  ax-pre-ltadd 7759  ax-pre-mulgt0 7760  ax-pre-mulext 7761  ax-arch 7762  ax-caucvg 7763
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rmo 2425  df-rab 2426  df-v 2691  df-sbc 2913  df-csb 3007  df-dif 3077  df-un 3079  df-in 3081  df-ss 3088  df-nul 3368  df-if 3479  df-pw 3516  df-sn 3537  df-pr 3538  df-op 3540  df-uni 3744  df-int 3779  df-iun 3822  df-br 3937  df-opab 3997  df-mpt 3998  df-tr 4034  df-id 4222  df-po 4225  df-iso 4226  df-iord 4295  df-on 4297  df-ilim 4298  df-suc 4300  df-iom 4512  df-xp 4552  df-rel 4553  df-cnv 4554  df-co 4555  df-dm 4556  df-rn 4557  df-res 4558  df-ima 4559  df-iota 5095  df-fun 5132  df-fn 5133  df-f 5134  df-f1 5135  df-fo 5136  df-f1o 5137  df-fv 5138  df-riota 5737  df-ov 5784  df-oprab 5785  df-mpo 5786  df-1st 6045  df-2nd 6046  df-recs 6209  df-frec 6295  df-map 6551  df-pnf 7825  df-mnf 7826  df-xr 7827  df-ltxr 7828  df-le 7829  df-sub 7958  df-neg 7959  df-reap 8360  df-ap 8367  df-div 8456  df-inn 8744  df-2 8802  df-3 8803  df-4 8804  df-n0 9001  df-z 9078  df-uz 9350  df-rp 9470  df-seqfrec 10249  df-exp 10323  df-cj 10645  df-re 10646  df-im 10647  df-rsqrt 10801  df-abs 10802  df-met 12195
This theorem is referenced by:  cnxmet  12737  remet  12746
  Copyright terms: Public domain W3C validator