ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmet Unicode version

Theorem cnmet 12452
Description: The absolute value metric determines a metric space on the complex numbers. This theorem provides a link between complex numbers and metrics spaces, making metric space theorems available for use with complex numbers. (Contributed by FL, 9-Oct-2006.)
Assertion
Ref Expression
cnmet  |-  ( abs 
o.  -  )  e.  ( Met `  CC )

Proof of Theorem cnmet
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnex 7616 . 2  |-  CC  e.  _V
2 absf 10722 . . 3  |-  abs : CC
--> RR
3 subf 7835 . . 3  |-  -  :
( CC  X.  CC )
--> CC
4 fco 5224 . . 3  |-  ( ( abs : CC --> RR  /\  -  : ( CC  X.  CC ) --> CC )  -> 
( abs  o.  -  ) : ( CC  X.  CC ) --> RR )
52, 3, 4mp2an 420 . 2  |-  ( abs 
o.  -  ) :
( CC  X.  CC )
--> RR
6 subcl 7832 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  -  y
)  e.  CC )
76abs00ad 10677 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x  -  y )  =  0 ) )
8 eqid 2100 . . . . . 6  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
98cnmetdval 12451 . . . . 5  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x ( abs 
o.  -  ) y
)  =  ( abs `  ( x  -  y
) ) )
109eqcomd 2105 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( abs `  (
x  -  y ) )  =  ( x ( abs  o.  -  ) y ) )
1110eqeq1d 2108 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( abs `  (
x  -  y ) )  =  0  <->  (
x ( abs  o.  -  ) y )  =  0 ) )
12 subeq0 7859 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x  -  y )  =  0  <-> 
x  =  y ) )
137, 11, 123bitr3d 217 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( ( x ( abs  o.  -  )
y )  =  0  <-> 
x  =  y ) )
14 abs3dif 10717 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) ) )
15 abssub 10713 . . . . . 6  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( abs `  (
x  -  z ) )  =  ( abs `  ( z  -  x
) ) )
1615oveq1d 5721 . . . . 5  |-  ( ( x  e.  CC  /\  z  e.  CC )  ->  ( ( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
17163adant2 968 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( abs `  (
x  -  z ) )  +  ( abs `  ( z  -  y
) ) )  =  ( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1814, 17breqtrd 3899 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  ( abs `  ( x  -  y ) )  <_ 
( ( abs `  (
z  -  x ) )  +  ( abs `  ( z  -  y
) ) ) )
1993adant3 969 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  =  ( abs `  (
x  -  y ) ) )
208cnmetdval 12451 . . . . . 6  |-  ( ( z  e.  CC  /\  x  e.  CC )  ->  ( z ( abs 
o.  -  ) x
)  =  ( abs `  ( z  -  x
) ) )
21203adant3 969 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) x )  =  ( abs `  (
z  -  x ) ) )
228cnmetdval 12451 . . . . . 6  |-  ( ( z  e.  CC  /\  y  e.  CC )  ->  ( z ( abs 
o.  -  ) y
)  =  ( abs `  ( z  -  y
) ) )
23223adant2 968 . . . . 5  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
z ( abs  o.  -  ) y )  =  ( abs `  (
z  -  y ) ) )
2421, 23oveq12d 5724 . . . 4  |-  ( ( z  e.  CC  /\  x  e.  CC  /\  y  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
25243coml 1156 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( z ( abs 
o.  -  ) x
)  +  ( z ( abs  o.  -  ) y ) )  =  ( ( abs `  ( z  -  x
) )  +  ( abs `  ( z  -  y ) ) ) )
2618, 19, 253brtr4d 3905 . 2  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
x ( abs  o.  -  ) y )  <_  ( ( z ( abs  o.  -  ) x )  +  ( z ( abs 
o.  -  ) y
) ) )
271, 5, 13, 26ismeti 12274 1  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    /\ w3a 930    = wceq 1299    e. wcel 1448    X. cxp 4475    o. ccom 4481   -->wf 5055   ` cfv 5059  (class class class)co 5706   CCcc 7498   RRcr 7499   0cc0 7500    + caddc 7503    <_ cle 7673    - cmin 7804   abscabs 10609   Metcmet 11932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-coll 3983  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293  ax-setind 4390  ax-iinf 4440  ax-cnex 7586  ax-resscn 7587  ax-1cn 7588  ax-1re 7589  ax-icn 7590  ax-addcl 7591  ax-addrcl 7592  ax-mulcl 7593  ax-mulrcl 7594  ax-addcom 7595  ax-mulcom 7596  ax-addass 7597  ax-mulass 7598  ax-distr 7599  ax-i2m1 7600  ax-0lt1 7601  ax-1rid 7602  ax-0id 7603  ax-rnegex 7604  ax-precex 7605  ax-cnre 7606  ax-pre-ltirr 7607  ax-pre-ltwlin 7608  ax-pre-lttrn 7609  ax-pre-apti 7610  ax-pre-ltadd 7611  ax-pre-mulgt0 7612  ax-pre-mulext 7613  ax-arch 7614  ax-caucvg 7615
This theorem depends on definitions:  df-bi 116  df-dc 787  df-3or 931  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-nel 2363  df-ral 2380  df-rex 2381  df-reu 2382  df-rmo 2383  df-rab 2384  df-v 2643  df-sbc 2863  df-csb 2956  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-if 3422  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-iun 3762  df-br 3876  df-opab 3930  df-mpt 3931  df-tr 3967  df-id 4153  df-po 4156  df-iso 4157  df-iord 4226  df-on 4228  df-ilim 4229  df-suc 4231  df-iom 4443  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-ima 4490  df-iota 5024  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-fv 5067  df-riota 5662  df-ov 5709  df-oprab 5710  df-mpo 5711  df-1st 5969  df-2nd 5970  df-recs 6132  df-frec 6218  df-map 6474  df-pnf 7674  df-mnf 7675  df-xr 7676  df-ltxr 7677  df-le 7678  df-sub 7806  df-neg 7807  df-reap 8203  df-ap 8210  df-div 8294  df-inn 8579  df-2 8637  df-3 8638  df-4 8639  df-n0 8830  df-z 8907  df-uz 9177  df-rp 9292  df-seqfrec 10060  df-exp 10134  df-cj 10455  df-re 10456  df-im 10457  df-rsqrt 10610  df-abs 10611  df-met 11940
This theorem is referenced by:  cnxmet  12453  remet  12459
  Copyright terms: Public domain W3C validator