ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcau Unicode version

Theorem cvg1nlemcau 10948
Description: Lemma for cvg1n 10950. By selecting spaced out terms for the modified sequence  G, the terms are within  1  /  n (without the constant  C). (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
cvg1nlem.g  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
cvg1nlem.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlem.start  |-  ( ph  ->  C  <  Z )
Assertion
Ref Expression
cvg1nlemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( G `  n )  <  ( ( G `
 k )  +  ( 1  /  n
) )  /\  ( G `  k )  <  ( ( G `  n )  +  ( 1  /  n ) ) ) )
Distinct variable groups:    C, n, k   
n, F, j, k   
j, Z    ph, k, n
Allowed substitution hints:    ph( j)    C( j)    G( j, k, n)    Z( k, n)

Proof of Theorem cvg1nlemcau
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 525 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2 cvg1n.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
32ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR )
4 cvg1nlem.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  NN )
54ad2antrr 485 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  NN )
61, 5nnmulcld 8927 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  NN )
73, 6ffvelrnd 5632 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  ( n  x.  Z
) )  e.  RR )
8 oveq1 5860 . . . . . . . . 9  |-  ( j  =  n  ->  (
j  x.  Z )  =  ( n  x.  Z ) )
98fveq2d 5500 . . . . . . . 8  |-  ( j  =  n  ->  ( F `  ( j  x.  Z ) )  =  ( F `  (
n  x.  Z ) ) )
10 cvg1nlem.g . . . . . . . 8  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
119, 10fvmptg 5572 . . . . . . 7  |-  ( ( n  e.  NN  /\  ( F `  ( n  x.  Z ) )  e.  RR )  -> 
( G `  n
)  =  ( F `
 ( n  x.  Z ) ) )
121, 7, 11syl2anc 409 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( F `  ( n  x.  Z ) ) )
1312, 7eqeltrd 2247 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  e.  RR )
14 eluznn 9559 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1514adantll 473 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
1615, 5nnmulcld 8927 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( k  x.  Z )  e.  NN )
173, 16ffvelrnd 5632 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  ( k  x.  Z
) )  e.  RR )
18 oveq1 5860 . . . . . . . . . 10  |-  ( j  =  k  ->  (
j  x.  Z )  =  ( k  x.  Z ) )
1918fveq2d 5500 . . . . . . . . 9  |-  ( j  =  k  ->  ( F `  ( j  x.  Z ) )  =  ( F `  (
k  x.  Z ) ) )
2019, 10fvmptg 5572 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( F `  ( k  x.  Z ) )  e.  RR )  -> 
( G `  k
)  =  ( F `
 ( k  x.  Z ) ) )
2115, 17, 20syl2anc 409 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( F `  ( k  x.  Z ) ) )
2221, 17eqeltrd 2247 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  e.  RR )
23 cvg1n.c . . . . . . . . 9  |-  ( ph  ->  C  e.  RR+ )
2423rpred 9653 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
2524ad2antrr 485 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR )
2625, 6nndivred 8928 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  ( n  x.  Z ) )  e.  RR )
2722, 26readdcld 7949 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  e.  RR )
281nnrecred 8925 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1  /  n )  e.  RR )
2922, 28readdcld 7949 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( 1  /  n ) )  e.  RR )
30 fveq2 5496 . . . . . . . . . . . 12  |-  ( b  =  ( k  x.  Z )  ->  ( F `  b )  =  ( F `  ( k  x.  Z
) ) )
3130oveq1d 5868 . . . . . . . . . . 11  |-  ( b  =  ( k  x.  Z )  ->  (
( F `  b
)  +  ( C  /  ( n  x.  Z ) ) )  =  ( ( F `
 ( k  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) )
3231breq2d 4001 . . . . . . . . . 10  |-  ( b  =  ( k  x.  Z )  ->  (
( F `  (
n  x.  Z ) )  <  ( ( F `  b )  +  ( C  / 
( n  x.  Z
) ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( F `  (
k  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
3330breq1d 3999 . . . . . . . . . 10  |-  ( b  =  ( k  x.  Z )  ->  (
( F `  b
)  <  ( ( F `  ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) )  <->  ( F `  ( k  x.  Z
) )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
3432, 33anbi12d 470 . . . . . . . . 9  |-  ( b  =  ( k  x.  Z )  ->  (
( ( F `  ( n  x.  Z
) )  <  (
( F `  b
)  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `  b )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) )  <->  ( ( F `
 ( n  x.  Z ) )  < 
( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 ( k  x.  Z ) )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
35 fveq2 5496 . . . . . . . . . . 11  |-  ( a  =  ( n  x.  Z )  ->  ( ZZ>=
`  a )  =  ( ZZ>= `  ( n  x.  Z ) ) )
36 fveq2 5496 . . . . . . . . . . . . 13  |-  ( a  =  ( n  x.  Z )  ->  ( F `  a )  =  ( F `  ( n  x.  Z
) ) )
37 oveq2 5861 . . . . . . . . . . . . . 14  |-  ( a  =  ( n  x.  Z )  ->  ( C  /  a )  =  ( C  /  (
n  x.  Z ) ) )
3837oveq2d 5869 . . . . . . . . . . . . 13  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  b
)  +  ( C  /  a ) )  =  ( ( F `
 b )  +  ( C  /  (
n  x.  Z ) ) ) )
3936, 38breq12d 4002 . . . . . . . . . . . 12  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  a
)  <  ( ( F `  b )  +  ( C  / 
a ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( F `  b
)  +  ( C  /  ( n  x.  Z ) ) ) ) )
4036, 37oveq12d 5871 . . . . . . . . . . . . 13  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  a
)  +  ( C  /  a ) )  =  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) )
4140breq2d 4001 . . . . . . . . . . . 12  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  b
)  <  ( ( F `  a )  +  ( C  / 
a ) )  <->  ( F `  b )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
4239, 41anbi12d 470 . . . . . . . . . . 11  |-  ( a  =  ( n  x.  Z )  ->  (
( ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) )  /\  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) )  <->  ( ( F `
 ( n  x.  Z ) )  < 
( ( F `  b )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 b )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
4335, 42raleqbidv 2677 . . . . . . . . . 10  |-  ( a  =  ( n  x.  Z )  ->  ( A. b  e.  ( ZZ>=
`  a ) ( ( F `  a
)  <  ( ( F `  b )  +  ( C  / 
a ) )  /\  ( F `  b )  <  ( ( F `
 a )  +  ( C  /  a
) ) )  <->  A. b  e.  ( ZZ>= `  ( n  x.  Z ) ) ( ( F `  (
n  x.  Z ) )  <  ( ( F `  b )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( F `  b )  <  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) ) ) )
44 cvg1n.cau . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
45 fveq2 5496 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
4645oveq1d 5868 . . . . . . . . . . . . . . . . 17  |-  ( k  =  b  ->  (
( F `  k
)  +  ( C  /  n ) )  =  ( ( F `
 b )  +  ( C  /  n
) ) )
4746breq2d 4001 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( C  /  n ) )  <->  ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) ) ) )
4845breq1d 3999 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( C  /  n ) )  <->  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
4947, 48anbi12d 470 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  ( ( F `
 n )  < 
( ( F `  b )  +  ( C  /  n ) )  /\  ( F `
 b )  < 
( ( F `  n )  +  ( C  /  n ) ) ) ) )
5049cbvralv 2696 . . . . . . . . . . . . . 14  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) )  <->  A. b  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) )  /\  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
5150ralbii 2476 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  A. n  e.  NN  A. b  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 b )  +  ( C  /  n
) )  /\  ( F `  b )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
52 fveq2 5496 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  a )
)
53 fveq2 5496 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
54 oveq2 5861 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  a  ->  ( C  /  n )  =  ( C  /  a
) )
5554oveq2d 5869 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  b
)  +  ( C  /  n ) )  =  ( ( F `
 b )  +  ( C  /  a
) ) )
5653, 55breq12d 4002 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  n
)  <  ( ( F `  b )  +  ( C  /  n ) )  <->  ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) ) ) )
5753, 54oveq12d 5871 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  n
)  +  ( C  /  n ) )  =  ( ( F `
 a )  +  ( C  /  a
) ) )
5857breq2d 4001 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  b
)  <  ( ( F `  n )  +  ( C  /  n ) )  <->  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) ) )
5956, 58anbi12d 470 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
( ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) )  /\  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  ( ( F `
 a )  < 
( ( F `  b )  +  ( C  /  a ) )  /\  ( F `
 b )  < 
( ( F `  a )  +  ( C  /  a ) ) ) ) )
6052, 59raleqbidv 2677 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  ( A. b  e.  ( ZZ>=
`  n ) ( ( F `  n
)  <  ( ( F `  b )  +  ( C  /  n ) )  /\  ( F `  b )  <  ( ( F `
 n )  +  ( C  /  n
) ) )  <->  A. b  e.  ( ZZ>= `  a )
( ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) )  /\  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) ) ) )
6160cbvralv 2696 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN  A. b  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) )  /\  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a ) ( ( F `  a )  <  ( ( F `
 b )  +  ( C  /  a
) )  /\  ( F `  b )  <  ( ( F `  a )  +  ( C  /  a ) ) ) )
6251, 61bitri 183 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a ) ( ( F `  a )  <  ( ( F `
 b )  +  ( C  /  a
) )  /\  ( F `  b )  <  ( ( F `  a )  +  ( C  /  a ) ) ) )
6344, 62sylib 121 . . . . . . . . . . 11  |-  ( ph  ->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a ) ( ( F `  a )  <  ( ( F `
 b )  +  ( C  /  a
) )  /\  ( F `  b )  <  ( ( F `  a )  +  ( C  /  a ) ) ) )
6463ad2antrr 485 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a )
( ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) )  /\  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) ) )
6543, 64, 6rspcdva 2839 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A. b  e.  ( ZZ>= `  ( n  x.  Z ) ) ( ( F `  (
n  x.  Z ) )  <  ( ( F `  b )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( F `  b )  <  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) ) )
66 eluzle 9499 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
6766adantl 275 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
681nnred 8891 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR )
6915nnred 8891 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  RR )
705nnrpd 9651 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  RR+ )
7168, 69, 70lemul1d 9697 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  x.  Z )  <_  (
k  x.  Z ) ) )
7267, 71mpbid 146 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  <_  (
k  x.  Z ) )
736nnzd 9333 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  ZZ )
7416nnzd 9333 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( k  x.  Z )  e.  ZZ )
75 eluz 9500 . . . . . . . . . . 11  |-  ( ( ( n  x.  Z
)  e.  ZZ  /\  ( k  x.  Z
)  e.  ZZ )  ->  ( ( k  x.  Z )  e.  ( ZZ>= `  ( n  x.  Z ) )  <->  ( n  x.  Z )  <_  (
k  x.  Z ) ) )
7673, 74, 75syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
k  x.  Z )  e.  ( ZZ>= `  (
n  x.  Z ) )  <->  ( n  x.  Z )  <_  (
k  x.  Z ) ) )
7772, 76mpbird 166 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( k  x.  Z )  e.  (
ZZ>= `  ( n  x.  Z ) ) )
7834, 65, 77rspcdva 2839 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  ( n  x.  Z ) )  < 
( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 ( k  x.  Z ) )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
7921oveq1d 5868 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  =  ( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) )
8079breq2d 4001 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  ( n  x.  Z ) )  < 
( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( F `  (
k  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8121breq1d 3999 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  <  ( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( F `  ( k  x.  Z
) )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8280, 81anbi12d 470 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  (
n  x.  Z ) )  <  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( G `  k )  <  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) )  <->  ( ( F `  ( n  x.  Z ) )  < 
( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 ( k  x.  Z ) )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
8378, 82mpbird 166 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  ( n  x.  Z ) )  < 
( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( G `
 k )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8412breq1d 3999 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  <  ( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( G `  k
)  +  ( C  /  ( n  x.  Z ) ) ) ) )
8512oveq1d 5868 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( C  / 
( n  x.  Z
) ) )  =  ( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) )
8685breq2d 4001 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  <  ( ( G `  n )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( G `  k )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8784, 86anbi12d 470 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( G `  n
)  <  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( G `  k )  <  ( ( G `
 n )  +  ( C  /  (
n  x.  Z ) ) ) )  <->  ( ( F `  ( n  x.  Z ) )  < 
( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( G `
 k )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
8883, 87mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  <  ( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( G `
 k )  < 
( ( G `  n )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8988simpld 111 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  <  (
( G `  k
)  +  ( C  /  ( n  x.  Z ) ) ) )
905nnred 8891 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  RR )
911nnrpd 9651 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
92 cvg1nlem.start . . . . . . . . 9  |-  ( ph  ->  C  <  Z )
9392ad2antrr 485 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  <  Z )
9425, 90, 91, 93ltmul1dd 9709 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  x.  n )  <  ( Z  x.  n )
)
956nncnd 8892 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  CC )
9695mulid2d 7938 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1  x.  ( n  x.  Z ) )  =  ( n  x.  Z
) )
9796breq2d 4001 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  x.  n )  <  ( 1  x.  (
n  x.  Z ) )  <->  ( C  x.  n )  <  (
n  x.  Z ) ) )
98 1red 7935 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  RR )
996nnrpd 9651 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  RR+ )
10025, 91, 98, 99lt2mul2divd 9722 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  x.  n )  <  ( 1  x.  (
n  x.  Z ) )  <->  ( C  / 
( n  x.  Z
) )  <  (
1  /  n ) ) )
1011nncnd 8892 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  CC )
1025nncnd 8892 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  CC )
103101, 102mulcomd 7941 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  =  ( Z  x.  n ) )
104103breq2d 4001 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  x.  n )  <  ( n  x.  Z
)  <->  ( C  x.  n )  <  ( Z  x.  n )
) )
10597, 100, 1043bitr3d 217 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  /  ( n  x.  Z ) )  < 
( 1  /  n
)  <->  ( C  x.  n )  <  ( Z  x.  n )
) )
10694, 105mpbird 166 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  ( n  x.  Z ) )  < 
( 1  /  n
) )
10726, 28, 22, 106ltadd2dd 8341 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  < 
( ( G `  k )  +  ( 1  /  n ) ) )
10813, 27, 29, 89, 107lttrd 8045 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  <  (
( G `  k
)  +  ( 1  /  n ) ) )
10913, 26readdcld 7949 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( C  / 
( n  x.  Z
) ) )  e.  RR )
11013, 28readdcld 7949 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( 1  /  n ) )  e.  RR )
11188simprd 113 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  <  (
( G `  n
)  +  ( C  /  ( n  x.  Z ) ) ) )
11226, 28, 13, 106ltadd2dd 8341 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( C  / 
( n  x.  Z
) ) )  < 
( ( G `  n )  +  ( 1  /  n ) ) )
11322, 109, 110, 111, 112lttrd 8045 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  <  (
( G `  n
)  +  ( 1  /  n ) ) )
114108, 113jca 304 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  <  ( ( G `  k )  +  ( 1  /  n ) )  /\  ( G `
 k )  < 
( ( G `  n )  +  ( 1  /  n ) ) ) )
115114ralrimiva 2543 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( G `  n )  <  (
( G `  k
)  +  ( 1  /  n ) )  /\  ( G `  k )  <  (
( G `  n
)  +  ( 1  /  n ) ) ) )
116115ralrimiva 2543 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( G `  n )  <  ( ( G `
 k )  +  ( 1  /  n
) )  /\  ( G `  k )  <  ( ( G `  n )  +  ( 1  /  n ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   A.wral 2448   class class class wbr 3989    |-> cmpt 4050   -->wf 5194   ` cfv 5198  (class class class)co 5853   RRcr 7773   1c1 7775    + caddc 7777    x. cmul 7779    < clt 7954    <_ cle 7955    / cdiv 8589   NNcn 8878   ZZcz 9212   ZZ>=cuz 9487   RR+crp 9610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865  ax-resscn 7866  ax-1cn 7867  ax-1re 7868  ax-icn 7869  ax-addcl 7870  ax-addrcl 7871  ax-mulcl 7872  ax-mulrcl 7873  ax-addcom 7874  ax-mulcom 7875  ax-addass 7876  ax-mulass 7877  ax-distr 7878  ax-i2m1 7879  ax-0lt1 7880  ax-1rid 7881  ax-0id 7882  ax-rnegex 7883  ax-precex 7884  ax-cnre 7885  ax-pre-ltirr 7886  ax-pre-ltwlin 7887  ax-pre-lttrn 7888  ax-pre-apti 7889  ax-pre-ltadd 7890  ax-pre-mulgt0 7891  ax-pre-mulext 7892
This theorem depends on definitions:  df-bi 116  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-po 4281  df-iso 4282  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-riota 5809  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pnf 7956  df-mnf 7957  df-xr 7958  df-ltxr 7959  df-le 7960  df-sub 8092  df-neg 8093  df-reap 8494  df-ap 8501  df-div 8590  df-inn 8879  df-n0 9136  df-z 9213  df-uz 9488  df-rp 9611
This theorem is referenced by:  cvg1nlemres  10949
  Copyright terms: Public domain W3C validator