ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cvg1nlemcau Unicode version

Theorem cvg1nlemcau 10417
Description: Lemma for cvg1n 10419. By selecting spaced out terms for the modified sequence  G, the terms are within  1  /  n (without the constant  C). (Contributed by Jim Kingdon, 1-Aug-2021.)
Hypotheses
Ref Expression
cvg1n.f  |-  ( ph  ->  F : NN --> RR )
cvg1n.c  |-  ( ph  ->  C  e.  RR+ )
cvg1n.cau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
cvg1nlem.g  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
cvg1nlem.z  |-  ( ph  ->  Z  e.  NN )
cvg1nlem.start  |-  ( ph  ->  C  <  Z )
Assertion
Ref Expression
cvg1nlemcau  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( G `  n )  <  ( ( G `
 k )  +  ( 1  /  n
) )  /\  ( G `  k )  <  ( ( G `  n )  +  ( 1  /  n ) ) ) )
Distinct variable groups:    C, n, k   
n, F, j, k   
j, Z    ph, k, n
Allowed substitution hints:    ph( j)    C( j)    G( j, k, n)    Z( k, n)

Proof of Theorem cvg1nlemcau
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simplr 497 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
2 cvg1n.f . . . . . . . . 9  |-  ( ph  ->  F : NN --> RR )
32ad2antrr 472 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> RR )
4 cvg1nlem.z . . . . . . . . . 10  |-  ( ph  ->  Z  e.  NN )
54ad2antrr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  NN )
61, 5nnmulcld 8471 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  NN )
73, 6ffvelrnd 5435 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  ( n  x.  Z
) )  e.  RR )
8 oveq1 5659 . . . . . . . . 9  |-  ( j  =  n  ->  (
j  x.  Z )  =  ( n  x.  Z ) )
98fveq2d 5309 . . . . . . . 8  |-  ( j  =  n  ->  ( F `  ( j  x.  Z ) )  =  ( F `  (
n  x.  Z ) ) )
10 cvg1nlem.g . . . . . . . 8  |-  G  =  ( j  e.  NN  |->  ( F `  ( j  x.  Z ) ) )
119, 10fvmptg 5380 . . . . . . 7  |-  ( ( n  e.  NN  /\  ( F `  ( n  x.  Z ) )  e.  RR )  -> 
( G `  n
)  =  ( F `
 ( n  x.  Z ) ) )
121, 7, 11syl2anc 403 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  =  ( F `  ( n  x.  Z ) ) )
1312, 7eqeltrd 2164 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  e.  RR )
14 eluznn 9087 . . . . . . . . 9  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
1514adantll 460 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
1615, 5nnmulcld 8471 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( k  x.  Z )  e.  NN )
173, 16ffvelrnd 5435 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  ( k  x.  Z
) )  e.  RR )
18 oveq1 5659 . . . . . . . . . 10  |-  ( j  =  k  ->  (
j  x.  Z )  =  ( k  x.  Z ) )
1918fveq2d 5309 . . . . . . . . 9  |-  ( j  =  k  ->  ( F `  ( j  x.  Z ) )  =  ( F `  (
k  x.  Z ) ) )
2019, 10fvmptg 5380 . . . . . . . 8  |-  ( ( k  e.  NN  /\  ( F `  ( k  x.  Z ) )  e.  RR )  -> 
( G `  k
)  =  ( F `
 ( k  x.  Z ) ) )
2115, 17, 20syl2anc 403 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  =  ( F `  ( k  x.  Z ) ) )
2221, 17eqeltrd 2164 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  e.  RR )
23 cvg1n.c . . . . . . . . 9  |-  ( ph  ->  C  e.  RR+ )
2423rpred 9173 . . . . . . . 8  |-  ( ph  ->  C  e.  RR )
2524ad2antrr 472 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  e.  RR )
2625, 6nndivred 8472 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  ( n  x.  Z ) )  e.  RR )
2722, 26readdcld 7517 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  e.  RR )
281nnrecred 8469 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1  /  n )  e.  RR )
2922, 28readdcld 7517 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( 1  /  n ) )  e.  RR )
30 fveq2 5305 . . . . . . . . . . . 12  |-  ( b  =  ( k  x.  Z )  ->  ( F `  b )  =  ( F `  ( k  x.  Z
) ) )
3130oveq1d 5667 . . . . . . . . . . 11  |-  ( b  =  ( k  x.  Z )  ->  (
( F `  b
)  +  ( C  /  ( n  x.  Z ) ) )  =  ( ( F `
 ( k  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) )
3231breq2d 3857 . . . . . . . . . 10  |-  ( b  =  ( k  x.  Z )  ->  (
( F `  (
n  x.  Z ) )  <  ( ( F `  b )  +  ( C  / 
( n  x.  Z
) ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( F `  (
k  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
3330breq1d 3855 . . . . . . . . . 10  |-  ( b  =  ( k  x.  Z )  ->  (
( F `  b
)  <  ( ( F `  ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) )  <->  ( F `  ( k  x.  Z
) )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
3432, 33anbi12d 457 . . . . . . . . 9  |-  ( b  =  ( k  x.  Z )  ->  (
( ( F `  ( n  x.  Z
) )  <  (
( F `  b
)  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `  b )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) )  <->  ( ( F `
 ( n  x.  Z ) )  < 
( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 ( k  x.  Z ) )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
35 fveq2 5305 . . . . . . . . . . 11  |-  ( a  =  ( n  x.  Z )  ->  ( ZZ>=
`  a )  =  ( ZZ>= `  ( n  x.  Z ) ) )
36 fveq2 5305 . . . . . . . . . . . . 13  |-  ( a  =  ( n  x.  Z )  ->  ( F `  a )  =  ( F `  ( n  x.  Z
) ) )
37 oveq2 5660 . . . . . . . . . . . . . 14  |-  ( a  =  ( n  x.  Z )  ->  ( C  /  a )  =  ( C  /  (
n  x.  Z ) ) )
3837oveq2d 5668 . . . . . . . . . . . . 13  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  b
)  +  ( C  /  a ) )  =  ( ( F `
 b )  +  ( C  /  (
n  x.  Z ) ) ) )
3936, 38breq12d 3858 . . . . . . . . . . . 12  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  a
)  <  ( ( F `  b )  +  ( C  / 
a ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( F `  b
)  +  ( C  /  ( n  x.  Z ) ) ) ) )
4036, 37oveq12d 5670 . . . . . . . . . . . . 13  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  a
)  +  ( C  /  a ) )  =  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) )
4140breq2d 3857 . . . . . . . . . . . 12  |-  ( a  =  ( n  x.  Z )  ->  (
( F `  b
)  <  ( ( F `  a )  +  ( C  / 
a ) )  <->  ( F `  b )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
4239, 41anbi12d 457 . . . . . . . . . . 11  |-  ( a  =  ( n  x.  Z )  ->  (
( ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) )  /\  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) )  <->  ( ( F `
 ( n  x.  Z ) )  < 
( ( F `  b )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 b )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
4335, 42raleqbidv 2574 . . . . . . . . . 10  |-  ( a  =  ( n  x.  Z )  ->  ( A. b  e.  ( ZZ>=
`  a ) ( ( F `  a
)  <  ( ( F `  b )  +  ( C  / 
a ) )  /\  ( F `  b )  <  ( ( F `
 a )  +  ( C  /  a
) ) )  <->  A. b  e.  ( ZZ>= `  ( n  x.  Z ) ) ( ( F `  (
n  x.  Z ) )  <  ( ( F `  b )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( F `  b )  <  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) ) ) )
44 cvg1n.cau . . . . . . . . . . . 12  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
45 fveq2 5305 . . . . . . . . . . . . . . . . . 18  |-  ( k  =  b  ->  ( F `  k )  =  ( F `  b ) )
4645oveq1d 5667 . . . . . . . . . . . . . . . . 17  |-  ( k  =  b  ->  (
( F `  k
)  +  ( C  /  n ) )  =  ( ( F `
 b )  +  ( C  /  n
) ) )
4746breq2d 3857 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  n
)  <  ( ( F `  k )  +  ( C  /  n ) )  <->  ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) ) ) )
4845breq1d 3855 . . . . . . . . . . . . . . . 16  |-  ( k  =  b  ->  (
( F `  k
)  <  ( ( F `  n )  +  ( C  /  n ) )  <->  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
4947, 48anbi12d 457 . . . . . . . . . . . . . . 15  |-  ( k  =  b  ->  (
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  ( ( F `
 n )  < 
( ( F `  b )  +  ( C  /  n ) )  /\  ( F `
 b )  < 
( ( F `  n )  +  ( C  /  n ) ) ) ) )
5049cbvralv 2590 . . . . . . . . . . . . . 14  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 k )  +  ( C  /  n
) )  /\  ( F `  k )  <  ( ( F `  n )  +  ( C  /  n ) ) )  <->  A. b  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) )  /\  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) ) )
5150ralbii 2384 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  A. n  e.  NN  A. b  e.  ( ZZ>= `  n ) ( ( F `  n )  <  ( ( F `
 b )  +  ( C  /  n
) )  /\  ( F `  b )  <  ( ( F `  n )  +  ( C  /  n ) ) ) )
52 fveq2 5305 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  ( ZZ>=
`  n )  =  ( ZZ>= `  a )
)
53 fveq2 5305 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  ( F `  n )  =  ( F `  a ) )
54 oveq2 5660 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  a  ->  ( C  /  n )  =  ( C  /  a
) )
5554oveq2d 5668 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  b
)  +  ( C  /  n ) )  =  ( ( F `
 b )  +  ( C  /  a
) ) )
5653, 55breq12d 3858 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  n
)  <  ( ( F `  b )  +  ( C  /  n ) )  <->  ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) ) ) )
5753, 54oveq12d 5670 . . . . . . . . . . . . . . . . 17  |-  ( n  =  a  ->  (
( F `  n
)  +  ( C  /  n ) )  =  ( ( F `
 a )  +  ( C  /  a
) ) )
5857breq2d 3857 . . . . . . . . . . . . . . . 16  |-  ( n  =  a  ->  (
( F `  b
)  <  ( ( F `  n )  +  ( C  /  n ) )  <->  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) ) )
5956, 58anbi12d 457 . . . . . . . . . . . . . . 15  |-  ( n  =  a  ->  (
( ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) )  /\  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  ( ( F `
 a )  < 
( ( F `  b )  +  ( C  /  a ) )  /\  ( F `
 b )  < 
( ( F `  a )  +  ( C  /  a ) ) ) ) )
6052, 59raleqbidv 2574 . . . . . . . . . . . . . 14  |-  ( n  =  a  ->  ( A. b  e.  ( ZZ>=
`  n ) ( ( F `  n
)  <  ( ( F `  b )  +  ( C  /  n ) )  /\  ( F `  b )  <  ( ( F `
 n )  +  ( C  /  n
) ) )  <->  A. b  e.  ( ZZ>= `  a )
( ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) )  /\  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) ) ) )
6160cbvralv 2590 . . . . . . . . . . . . 13  |-  ( A. n  e.  NN  A. b  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  b
)  +  ( C  /  n ) )  /\  ( F `  b )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a ) ( ( F `  a )  <  ( ( F `
 b )  +  ( C  /  a
) )  /\  ( F `  b )  <  ( ( F `  a )  +  ( C  /  a ) ) ) )
6251, 61bitri 182 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( F `  n )  <  (
( F `  k
)  +  ( C  /  n ) )  /\  ( F `  k )  <  (
( F `  n
)  +  ( C  /  n ) ) )  <->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a ) ( ( F `  a )  <  ( ( F `
 b )  +  ( C  /  a
) )  /\  ( F `  b )  <  ( ( F `  a )  +  ( C  /  a ) ) ) )
6344, 62sylib 120 . . . . . . . . . . 11  |-  ( ph  ->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a ) ( ( F `  a )  <  ( ( F `
 b )  +  ( C  /  a
) )  /\  ( F `  b )  <  ( ( F `  a )  +  ( C  /  a ) ) ) )
6463ad2antrr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A. a  e.  NN  A. b  e.  ( ZZ>= `  a )
( ( F `  a )  <  (
( F `  b
)  +  ( C  /  a ) )  /\  ( F `  b )  <  (
( F `  a
)  +  ( C  /  a ) ) ) )
6543, 64, 6rspcdva 2727 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  A. b  e.  ( ZZ>= `  ( n  x.  Z ) ) ( ( F `  (
n  x.  Z ) )  <  ( ( F `  b )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( F `  b )  <  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) ) )
66 eluzle 9031 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  n
)  ->  n  <_  k )
6766adantl 271 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  <_  k )
681nnred 8435 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR )
6915nnred 8435 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  RR )
705nnrpd 9172 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  RR+ )
7168, 69, 70lemul1d 9217 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  <_  k  <->  ( n  x.  Z )  <_  (
k  x.  Z ) ) )
7267, 71mpbid 145 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  <_  (
k  x.  Z ) )
736nnzd 8867 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  ZZ )
7416nnzd 8867 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( k  x.  Z )  e.  ZZ )
75 eluz 9032 . . . . . . . . . . 11  |-  ( ( ( n  x.  Z
)  e.  ZZ  /\  ( k  x.  Z
)  e.  ZZ )  ->  ( ( k  x.  Z )  e.  ( ZZ>= `  ( n  x.  Z ) )  <->  ( n  x.  Z )  <_  (
k  x.  Z ) ) )
7673, 74, 75syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
k  x.  Z )  e.  ( ZZ>= `  (
n  x.  Z ) )  <->  ( n  x.  Z )  <_  (
k  x.  Z ) ) )
7772, 76mpbird 165 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( k  x.  Z )  e.  (
ZZ>= `  ( n  x.  Z ) ) )
7834, 65, 77rspcdva 2727 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  ( n  x.  Z ) )  < 
( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 ( k  x.  Z ) )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
7921oveq1d 5667 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  =  ( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) )
8079breq2d 3857 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  ( n  x.  Z ) )  < 
( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( F `  (
k  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8121breq1d 3855 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  <  ( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( F `  ( k  x.  Z
) )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8280, 81anbi12d 457 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( F `  (
n  x.  Z ) )  <  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( G `  k )  <  ( ( F `
 ( n  x.  Z ) )  +  ( C  /  (
n  x.  Z ) ) ) )  <->  ( ( F `  ( n  x.  Z ) )  < 
( ( F `  ( k  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( F `
 ( k  x.  Z ) )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
8378, 82mpbird 165 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( F `  ( n  x.  Z ) )  < 
( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( G `
 k )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8412breq1d 3855 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  <  ( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( F `  ( n  x.  Z
) )  <  (
( G `  k
)  +  ( C  /  ( n  x.  Z ) ) ) ) )
8512oveq1d 5667 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( C  / 
( n  x.  Z
) ) )  =  ( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) )
8685breq2d 3857 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  <  ( ( G `  n )  +  ( C  /  ( n  x.  Z ) ) )  <->  ( G `  k )  <  (
( F `  (
n  x.  Z ) )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8784, 86anbi12d 457 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( G `  n
)  <  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  /\  ( G `  k )  <  ( ( G `
 n )  +  ( C  /  (
n  x.  Z ) ) ) )  <->  ( ( F `  ( n  x.  Z ) )  < 
( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( G `
 k )  < 
( ( F `  ( n  x.  Z
) )  +  ( C  /  ( n  x.  Z ) ) ) ) ) )
8883, 87mpbird 165 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  <  ( ( G `  k )  +  ( C  /  ( n  x.  Z ) ) )  /\  ( G `
 k )  < 
( ( G `  n )  +  ( C  /  ( n  x.  Z ) ) ) ) )
8988simpld 110 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  <  (
( G `  k
)  +  ( C  /  ( n  x.  Z ) ) ) )
905nnred 8435 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  RR )
911nnrpd 9172 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  RR+ )
92 cvg1nlem.start . . . . . . . . 9  |-  ( ph  ->  C  <  Z )
9392ad2antrr 472 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  C  <  Z )
9425, 90, 91, 93ltmul1dd 9229 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  x.  n )  <  ( Z  x.  n )
)
956nncnd 8436 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  CC )
9695mulid2d 7506 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1  x.  ( n  x.  Z ) )  =  ( n  x.  Z
) )
9796breq2d 3857 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  x.  n )  <  ( 1  x.  (
n  x.  Z ) )  <->  ( C  x.  n )  <  (
n  x.  Z ) ) )
98 1red 7503 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  1  e.  RR )
996nnrpd 9172 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  e.  RR+ )
10025, 91, 98, 99lt2mul2divd 9236 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  x.  n )  <  ( 1  x.  (
n  x.  Z ) )  <->  ( C  / 
( n  x.  Z
) )  <  (
1  /  n ) ) )
1011nncnd 8436 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  CC )
1025nncnd 8436 . . . . . . . . . 10  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  Z  e.  CC )
103101, 102mulcomd 7509 . . . . . . . . 9  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( n  x.  Z )  =  ( Z  x.  n ) )
104103breq2d 3857 . . . . . . . 8  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  x.  n )  <  ( n  x.  Z
)  <->  ( C  x.  n )  <  ( Z  x.  n )
) )
10597, 100, 1043bitr3d 216 . . . . . . 7  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( C  /  ( n  x.  Z ) )  < 
( 1  /  n
)  <->  ( C  x.  n )  <  ( Z  x.  n )
) )
10694, 105mpbird 165 . . . . . 6  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( C  /  ( n  x.  Z ) )  < 
( 1  /  n
) )
10726, 28, 22, 106ltadd2dd 7900 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  k )  +  ( C  / 
( n  x.  Z
) ) )  < 
( ( G `  k )  +  ( 1  /  n ) ) )
10813, 27, 29, 89, 107lttrd 7609 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  n )  <  (
( G `  k
)  +  ( 1  /  n ) ) )
10913, 26readdcld 7517 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( C  / 
( n  x.  Z
) ) )  e.  RR )
11013, 28readdcld 7517 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( 1  /  n ) )  e.  RR )
11188simprd 112 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  <  (
( G `  n
)  +  ( C  /  ( n  x.  Z ) ) ) )
11226, 28, 13, 106ltadd2dd 7900 . . . . 5  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  +  ( C  / 
( n  x.  Z
) ) )  < 
( ( G `  n )  +  ( 1  /  n ) ) )
11322, 109, 110, 111, 112lttrd 7609 . . . 4  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( G `  k )  <  (
( G `  n
)  +  ( 1  /  n ) ) )
114108, 113jca 300 . . 3  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( G `  n )  <  ( ( G `  k )  +  ( 1  /  n ) )  /\  ( G `
 k )  < 
( ( G `  n )  +  ( 1  /  n ) ) ) )
115114ralrimiva 2446 . 2  |-  ( (
ph  /\  n  e.  NN )  ->  A. k  e.  ( ZZ>= `  n )
( ( G `  n )  <  (
( G `  k
)  +  ( 1  /  n ) )  /\  ( G `  k )  <  (
( G `  n
)  +  ( 1  /  n ) ) ) )
116115ralrimiva 2446 1  |-  ( ph  ->  A. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( G `  n )  <  ( ( G `
 k )  +  ( 1  /  n
) )  /\  ( G `  k )  <  ( ( G `  n )  +  ( 1  /  n ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359   class class class wbr 3845    |-> cmpt 3899   -->wf 5011   ` cfv 5015  (class class class)co 5652   RRcr 7349   1c1 7351    + caddc 7353    x. cmul 7355    < clt 7522    <_ cle 7523    / cdiv 8139   NNcn 8422   ZZcz 8750   ZZ>=cuz 9019   RR+crp 9134
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-po 4123  df-iso 4124  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-n0 8674  df-z 8751  df-uz 9020  df-rp 9135
This theorem is referenced by:  cvg1nlemres  10418
  Copyright terms: Public domain W3C validator