![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > adddid | Unicode version |
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addcld.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
addassd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
adddid |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addcld.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | addassd.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | adddi 8006 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 2, 3, 4 | syl3anc 1249 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 7978 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: subdi 8406 mulreim 8625 apadd1 8629 conjmulap 8750 cju 8982 flhalf 10374 modqcyc 10433 addmodlteq 10472 binom2 10725 binom3 10731 sqoddm1div8 10767 bcpasc 10840 remim 11007 mulreap 11011 readd 11016 remullem 11018 imadd 11024 cjadd 11031 bdtrilem 11385 fsummulc2 11594 binomlem 11629 tanval3ap 11860 sinadd 11882 tanaddap 11885 bezoutlemnewy 12136 dvdsmulgcd 12165 lcmgcdlem 12218 pythagtriplem1 12406 pcaddlem 12480 mul4sqlem 12534 tangtx 15014 rpmulcxp 15085 binom4 15152 lgseisenlem2 15228 2lgsoddprmlem2 15263 2sqlem4 15275 2sqlem8 15280 |
Copyright terms: Public domain | W3C validator |