| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | Unicode version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| adddid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | adddi 8057 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8029 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: subdi 8457 mulreim 8677 apadd1 8681 conjmulap 8802 cju 9034 flhalf 10445 modqcyc 10504 addmodlteq 10543 binom2 10796 binom3 10802 sqoddm1div8 10838 bcpasc 10911 remim 11171 mulreap 11175 readd 11180 remullem 11182 imadd 11188 cjadd 11195 bdtrilem 11550 fsummulc2 11759 binomlem 11794 tanval3ap 12025 sinadd 12047 tanaddap 12050 bezoutlemnewy 12317 dvdsmulgcd 12346 lcmgcdlem 12399 pythagtriplem1 12588 pcaddlem 12662 mul4sqlem 12716 tangtx 15310 rpmulcxp 15381 rpcxpmul2 15385 binom4 15451 lgseisenlem2 15548 2lgsoddprmlem2 15583 2sqlem4 15595 2sqlem8 15600 |
| Copyright terms: Public domain | W3C validator |