| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | Unicode version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| adddid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | adddi 8131 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1271 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8103 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: subdi 8531 mulreim 8751 apadd1 8755 conjmulap 8876 cju 9108 flhalf 10522 modqcyc 10581 addmodlteq 10620 binom2 10873 binom3 10879 sqoddm1div8 10915 bcpasc 10988 remim 11371 mulreap 11375 readd 11380 remullem 11382 imadd 11388 cjadd 11395 bdtrilem 11750 fsummulc2 11959 binomlem 11994 tanval3ap 12225 sinadd 12247 tanaddap 12250 bezoutlemnewy 12517 dvdsmulgcd 12546 lcmgcdlem 12599 pythagtriplem1 12788 pcaddlem 12862 mul4sqlem 12916 tangtx 15512 rpmulcxp 15583 rpcxpmul2 15587 binom4 15653 lgseisenlem2 15750 2lgsoddprmlem2 15785 2sqlem4 15797 2sqlem8 15802 |
| Copyright terms: Public domain | W3C validator |