Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adddid | Unicode version |
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | |
addcld.2 | |
addassd.3 |
Ref | Expression |
---|---|
adddid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 | |
2 | addcld.2 | . 2 | |
3 | addassd.3 | . 2 | |
4 | adddi 7899 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5851 cc 7765 caddc 7770 cmul 7772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-distr 7871 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: subdi 8297 mulreim 8516 apadd1 8520 conjmulap 8639 cju 8870 flhalf 10251 modqcyc 10308 addmodlteq 10347 binom2 10580 binom3 10586 sqoddm1div8 10622 bcpasc 10693 remim 10817 mulreap 10821 readd 10826 remullem 10828 imadd 10834 cjadd 10841 bdtrilem 11195 fsummulc2 11404 binomlem 11439 tanval3ap 11670 sinadd 11692 tanaddap 11695 bezoutlemnewy 11944 dvdsmulgcd 11973 lcmgcdlem 12024 pythagtriplem1 12212 pcaddlem 12285 mul4sqlem 12338 tangtx 13518 rpmulcxp 13589 binom4 13656 2sqlem4 13713 2sqlem8 13718 |
Copyright terms: Public domain | W3C validator |