| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | Unicode version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| adddid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | adddi 8092 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8064 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: subdi 8492 mulreim 8712 apadd1 8716 conjmulap 8837 cju 9069 flhalf 10482 modqcyc 10541 addmodlteq 10580 binom2 10833 binom3 10839 sqoddm1div8 10875 bcpasc 10948 remim 11286 mulreap 11290 readd 11295 remullem 11297 imadd 11303 cjadd 11310 bdtrilem 11665 fsummulc2 11874 binomlem 11909 tanval3ap 12140 sinadd 12162 tanaddap 12165 bezoutlemnewy 12432 dvdsmulgcd 12461 lcmgcdlem 12514 pythagtriplem1 12703 pcaddlem 12777 mul4sqlem 12831 tangtx 15425 rpmulcxp 15496 rpcxpmul2 15500 binom4 15566 lgseisenlem2 15663 2lgsoddprmlem2 15698 2sqlem4 15710 2sqlem8 15715 |
| Copyright terms: Public domain | W3C validator |