| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > adddid | Unicode version | ||
| Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addcld.1 |
|
| addcld.2 |
|
| addassd.3 |
|
| Ref | Expression |
|---|---|
| adddid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcld.1 |
. 2
| |
| 2 | addcld.2 |
. 2
| |
| 3 | addassd.3 |
. 2
| |
| 4 | adddi 8059 |
. 2
| |
| 5 | 1, 2, 3, 4 | syl3anc 1250 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-distr 8031 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: subdi 8459 mulreim 8679 apadd1 8683 conjmulap 8804 cju 9036 flhalf 10447 modqcyc 10506 addmodlteq 10545 binom2 10798 binom3 10804 sqoddm1div8 10840 bcpasc 10913 remim 11204 mulreap 11208 readd 11213 remullem 11215 imadd 11221 cjadd 11228 bdtrilem 11583 fsummulc2 11792 binomlem 11827 tanval3ap 12058 sinadd 12080 tanaddap 12083 bezoutlemnewy 12350 dvdsmulgcd 12379 lcmgcdlem 12432 pythagtriplem1 12621 pcaddlem 12695 mul4sqlem 12749 tangtx 15343 rpmulcxp 15414 rpcxpmul2 15418 binom4 15484 lgseisenlem2 15581 2lgsoddprmlem2 15616 2sqlem4 15628 2sqlem8 15633 |
| Copyright terms: Public domain | W3C validator |