Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > adddid | Unicode version |
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.) |
Ref | Expression |
---|---|
addcld.1 | |
addcld.2 | |
addassd.3 |
Ref | Expression |
---|---|
adddid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcld.1 | . 2 | |
2 | addcld.2 | . 2 | |
3 | addassd.3 | . 2 | |
4 | adddi 7906 | . 2 | |
5 | 1, 2, 3, 4 | syl3anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1348 wcel 2141 (class class class)co 5853 cc 7772 caddc 7777 cmul 7779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-distr 7878 |
This theorem depends on definitions: df-bi 116 df-3an 975 |
This theorem is referenced by: subdi 8304 mulreim 8523 apadd1 8527 conjmulap 8646 cju 8877 flhalf 10258 modqcyc 10315 addmodlteq 10354 binom2 10587 binom3 10593 sqoddm1div8 10629 bcpasc 10700 remim 10824 mulreap 10828 readd 10833 remullem 10835 imadd 10841 cjadd 10848 bdtrilem 11202 fsummulc2 11411 binomlem 11446 tanval3ap 11677 sinadd 11699 tanaddap 11702 bezoutlemnewy 11951 dvdsmulgcd 11980 lcmgcdlem 12031 pythagtriplem1 12219 pcaddlem 12292 mul4sqlem 12345 tangtx 13553 rpmulcxp 13624 binom4 13691 2sqlem4 13748 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |