ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  adddid Unicode version

Theorem adddid 7937
Description: Distributive law (left-distributivity). (Contributed by Mario Carneiro, 27-May-2016.)
Hypotheses
Ref Expression
addcld.1  |-  ( ph  ->  A  e.  CC )
addcld.2  |-  ( ph  ->  B  e.  CC )
addassd.3  |-  ( ph  ->  C  e.  CC )
Assertion
Ref Expression
adddid  |-  ( ph  ->  ( A  x.  ( B  +  C )
)  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )

Proof of Theorem adddid
StepHypRef Expression
1 addcld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addcld.2 . 2  |-  ( ph  ->  B  e.  CC )
3 addassd.3 . 2  |-  ( ph  ->  C  e.  CC )
4 adddi 7899 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  ( A  x.  ( B  +  C ) )  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
51, 2, 3, 4syl3anc 1233 1  |-  ( ph  ->  ( A  x.  ( B  +  C )
)  =  ( ( A  x.  B )  +  ( A  x.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141  (class class class)co 5851   CCcc 7765    + caddc 7770    x. cmul 7772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-distr 7871
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  subdi  8297  mulreim  8516  apadd1  8520  conjmulap  8639  cju  8870  flhalf  10251  modqcyc  10308  addmodlteq  10347  binom2  10580  binom3  10586  sqoddm1div8  10622  bcpasc  10693  remim  10817  mulreap  10821  readd  10826  remullem  10828  imadd  10834  cjadd  10841  bdtrilem  11195  fsummulc2  11404  binomlem  11439  tanval3ap  11670  sinadd  11692  tanaddap  11695  bezoutlemnewy  11944  dvdsmulgcd  11973  lcmgcdlem  12024  pythagtriplem1  12212  pcaddlem  12285  mul4sqlem  12338  tangtx  13518  rpmulcxp  13589  binom4  13656  2sqlem4  13713  2sqlem8  13718
  Copyright terms: Public domain W3C validator