| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > divdirap | Unicode version | ||
| Description: Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.) |
| Ref | Expression |
|---|---|
| divdirap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. . 3
| |
| 2 | simp2 1001 |
. . 3
| |
| 3 | recclap 8765 |
. . . 4
| |
| 4 | 3 | 3ad2ant3 1023 |
. . 3
|
| 5 | 1, 2, 4 | adddird 8111 |
. 2
|
| 6 | 1, 2 | addcld 8105 |
. . 3
|
| 7 | simp3l 1028 |
. . 3
| |
| 8 | simp3r 1029 |
. . 3
| |
| 9 | divrecap 8774 |
. . 3
| |
| 10 | 6, 7, 8, 9 | syl3anc 1250 |
. 2
|
| 11 | divrecap 8774 |
. . . 4
| |
| 12 | 1, 7, 8, 11 | syl3anc 1250 |
. . 3
|
| 13 | divrecap 8774 |
. . . 4
| |
| 14 | 2, 7, 8, 13 | syl3anc 1250 |
. . 3
|
| 15 | 12, 14 | oveq12d 5972 |
. 2
|
| 16 | 5, 10, 15 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-br 4049 df-opab 4111 df-id 4345 df-po 4348 df-iso 4349 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 |
| This theorem is referenced by: muldivdirap 8793 divsubdirap 8794 divadddivap 8813 divdirapzi 8850 divdirapi 8855 divdirapd 8915 2halves 9279 halfaddsub 9284 zdivadd 9475 nneoor 9488 2tnp1ge0ge0 10457 flqdiv 10479 mulsubdivbinom2ap 10869 crim 11219 efival 12093 divgcdcoprm0 12473 ptolemy 15346 |
| Copyright terms: Public domain | W3C validator |