ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  divdirap Unicode version

Theorem divdirap 8571
Description: Distribution of division over addition. (Contributed by Jim Kingdon, 25-Feb-2020.)
Assertion
Ref Expression
divdirap  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  +  B )  /  C
)  =  ( ( A  /  C )  +  ( B  /  C ) ) )

Proof of Theorem divdirap
StepHypRef Expression
1 simp1 982 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  A  e.  CC )
2 simp2 983 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  B  e.  CC )
3 recclap 8553 . . . 4  |-  ( ( C  e.  CC  /\  C #  0 )  ->  (
1  /  C )  e.  CC )
433ad2ant3 1005 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( 1  /  C
)  e.  CC )
51, 2, 4adddird 7904 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  +  B )  x.  (
1  /  C ) )  =  ( ( A  x.  ( 1  /  C ) )  +  ( B  x.  ( 1  /  C
) ) ) )
61, 2addcld 7898 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  +  B
)  e.  CC )
7 simp3l 1010 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C  e.  CC )
8 simp3r 1011 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  ->  C #  0 )
9 divrecap 8562 . . 3  |-  ( ( ( A  +  B
)  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  (
( A  +  B
)  /  C )  =  ( ( A  +  B )  x.  ( 1  /  C
) ) )
106, 7, 8, 9syl3anc 1220 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  +  B )  /  C
)  =  ( ( A  +  B )  x.  ( 1  /  C ) ) )
11 divrecap 8562 . . . 4  |-  ( ( A  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( A  /  C )  =  ( A  x.  (
1  /  C ) ) )
121, 7, 8, 11syl3anc 1220 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( A  /  C
)  =  ( A  x.  ( 1  /  C ) ) )
13 divrecap 8562 . . . 4  |-  ( ( B  e.  CC  /\  C  e.  CC  /\  C #  0 )  ->  ( B  /  C )  =  ( B  x.  (
1  /  C ) ) )
142, 7, 8, 13syl3anc 1220 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( B  /  C
)  =  ( B  x.  ( 1  /  C ) ) )
1512, 14oveq12d 5843 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  /  C )  +  ( B  /  C ) )  =  ( ( A  x.  ( 1  /  C ) )  +  ( B  x.  ( 1  /  C
) ) ) )
165, 10, 153eqtr4d 2200 1  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  ( C  e.  CC  /\  C #  0 ) )  -> 
( ( A  +  B )  /  C
)  =  ( ( A  /  C )  +  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3966  (class class class)co 5825   CCcc 7731   0cc0 7733   1c1 7734    + caddc 7736    x. cmul 7738   # cap 8457    / cdiv 8546
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-id 4254  df-po 4257  df-iso 4258  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-iota 5136  df-fun 5173  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547
This theorem is referenced by:  muldivdirap  8581  divsubdirap  8582  divadddivap  8601  divdirapzi  8638  divdirapi  8643  divdirapd  8703  2halves  9063  halfaddsub  9068  zdivadd  9254  nneoor  9267  2tnp1ge0ge0  10204  flqdiv  10224  crim  10762  efival  11633  divgcdcoprm0  11982  ptolemy  13187
  Copyright terms: Public domain W3C validator