ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2 Unicode version

Theorem binom2 10617
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006.)
Assertion
Ref Expression
binom2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )

Proof of Theorem binom2
StepHypRef Expression
1 addcl 7927 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
3 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
41, 2, 3adddid 7972 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  +  B
)  x.  A )  +  ( ( A  +  B )  x.  B ) ) )
52, 3, 2adddird 7973 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( B  x.  A ) ) )
63, 2mulcomd 7969 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  A
)  =  ( A  x.  B ) )
76oveq2d 5885 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( B  x.  A ) )  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
85, 7eqtrd 2210 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
92, 3, 3adddird 7973 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  B
)  =  ( ( A  x.  B )  +  ( B  x.  B ) ) )
108, 9oveq12d 5887 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
112, 2mulcld 7968 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  A
)  e.  CC )
122, 3mulcld 7968 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
1311, 12addcld 7967 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( A  x.  B ) )  e.  CC )
143, 3mulcld 7968 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  B
)  e.  CC )
1513, 12, 14addassd 7970 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
1611, 12, 12addassd 7970 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  +  ( A  x.  B
) )  +  ( A  x.  B ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
1716oveq1d 5884 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
1810, 15, 173eqtr2d 2216 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
194, 18eqtrd 2210 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
20 sqval 10564 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B
) ) )
211, 20syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B ) ) )
22 sqval 10564 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
232, 22syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
24122timesd 9150 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  =  ( ( A  x.  B )  +  ( A  x.  B ) ) )
2523, 24oveq12d 5887 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
26 sqval 10564 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
273, 26syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
2825, 27oveq12d 5887 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
2919, 21, 283eqtr4d 2220 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148  (class class class)co 5869   CCcc 7800    + caddc 7805    x. cmul 7807   2c2 8959   ^cexp 10505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-n0 9166  df-z 9243  df-uz 9518  df-seqfrec 10432  df-exp 10506
This theorem is referenced by:  binom21  10618  binom2sub  10619  mulbinom2  10622  binom3  10623  nn0opthlem1d  10684  resqrexlemover  11003  resqrexlemcalc1  11007  abstri  11097  amgm2  11111  bdtrilem  11231  pythagtriplem1  12248  pythagtriplem12  12258
  Copyright terms: Public domain W3C validator