ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2 Unicode version

Theorem binom2 10743
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006.)
Assertion
Ref Expression
binom2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )

Proof of Theorem binom2
StepHypRef Expression
1 addcl 8004 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
3 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
41, 2, 3adddid 8051 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  +  B
)  x.  A )  +  ( ( A  +  B )  x.  B ) ) )
52, 3, 2adddird 8052 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( B  x.  A ) ) )
63, 2mulcomd 8048 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  A
)  =  ( A  x.  B ) )
76oveq2d 5938 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( B  x.  A ) )  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
85, 7eqtrd 2229 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
92, 3, 3adddird 8052 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  B
)  =  ( ( A  x.  B )  +  ( B  x.  B ) ) )
108, 9oveq12d 5940 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
112, 2mulcld 8047 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  A
)  e.  CC )
122, 3mulcld 8047 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
1311, 12addcld 8046 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( A  x.  B ) )  e.  CC )
143, 3mulcld 8047 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  B
)  e.  CC )
1513, 12, 14addassd 8049 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
1611, 12, 12addassd 8049 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  +  ( A  x.  B
) )  +  ( A  x.  B ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
1716oveq1d 5937 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
1810, 15, 173eqtr2d 2235 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
194, 18eqtrd 2229 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
20 sqval 10689 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B
) ) )
211, 20syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B ) ) )
22 sqval 10689 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
232, 22syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
24122timesd 9234 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  =  ( ( A  x.  B )  +  ( A  x.  B ) ) )
2523, 24oveq12d 5940 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
26 sqval 10689 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
273, 26syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
2825, 27oveq12d 5940 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
2919, 21, 283eqtr4d 2239 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877    + caddc 7882    x. cmul 7884   2c2 9041   ^cexp 10630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-2 9049  df-n0 9250  df-z 9327  df-uz 9602  df-seqfrec 10540  df-exp 10631
This theorem is referenced by:  binom21  10744  binom2sub  10745  mulbinom2  10748  binom3  10749  nn0opthlem1d  10812  resqrexlemover  11175  resqrexlemcalc1  11179  abstri  11269  amgm2  11283  bdtrilem  11404  pythagtriplem1  12434  pythagtriplem12  12444
  Copyright terms: Public domain W3C validator