ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2 Unicode version

Theorem binom2 10562
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006.)
Assertion
Ref Expression
binom2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )

Proof of Theorem binom2
StepHypRef Expression
1 addcl 7874 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 simpl 108 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
3 simpr 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
41, 2, 3adddid 7919 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  +  B
)  x.  A )  +  ( ( A  +  B )  x.  B ) ) )
52, 3, 2adddird 7920 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( B  x.  A ) ) )
63, 2mulcomd 7916 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  A
)  =  ( A  x.  B ) )
76oveq2d 5857 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( B  x.  A ) )  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
85, 7eqtrd 2198 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
92, 3, 3adddird 7920 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  B
)  =  ( ( A  x.  B )  +  ( B  x.  B ) ) )
108, 9oveq12d 5859 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
112, 2mulcld 7915 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  A
)  e.  CC )
122, 3mulcld 7915 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
1311, 12addcld 7914 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( A  x.  B ) )  e.  CC )
143, 3mulcld 7915 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  B
)  e.  CC )
1513, 12, 14addassd 7917 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
1611, 12, 12addassd 7917 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  +  ( A  x.  B
) )  +  ( A  x.  B ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
1716oveq1d 5856 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
1810, 15, 173eqtr2d 2204 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
194, 18eqtrd 2198 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
20 sqval 10509 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B
) ) )
211, 20syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B ) ) )
22 sqval 10509 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
232, 22syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
24122timesd 9095 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  =  ( ( A  x.  B )  +  ( A  x.  B ) ) )
2523, 24oveq12d 5859 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
26 sqval 10509 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
273, 26syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
2825, 27oveq12d 5859 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
2919, 21, 283eqtr4d 2208 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5841   CCcc 7747    + caddc 7752    x. cmul 7754   2c2 8904   ^cexp 10450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4096  ax-sep 4099  ax-nul 4107  ax-pow 4152  ax-pr 4186  ax-un 4410  ax-setind 4513  ax-iinf 4564  ax-cnex 7840  ax-resscn 7841  ax-1cn 7842  ax-1re 7843  ax-icn 7844  ax-addcl 7845  ax-addrcl 7846  ax-mulcl 7847  ax-mulrcl 7848  ax-addcom 7849  ax-mulcom 7850  ax-addass 7851  ax-mulass 7852  ax-distr 7853  ax-i2m1 7854  ax-0lt1 7855  ax-1rid 7856  ax-0id 7857  ax-rnegex 7858  ax-precex 7859  ax-cnre 7860  ax-pre-ltirr 7861  ax-pre-ltwlin 7862  ax-pre-lttrn 7863  ax-pre-apti 7864  ax-pre-ltadd 7865  ax-pre-mulgt0 7866  ax-pre-mulext 7867
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-nel 2431  df-ral 2448  df-rex 2449  df-reu 2450  df-rmo 2451  df-rab 2452  df-v 2727  df-sbc 2951  df-csb 3045  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-nul 3409  df-if 3520  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-int 3824  df-iun 3867  df-br 3982  df-opab 4043  df-mpt 4044  df-tr 4080  df-id 4270  df-po 4273  df-iso 4274  df-iord 4343  df-on 4345  df-ilim 4346  df-suc 4348  df-iom 4567  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-rn 4614  df-res 4615  df-ima 4616  df-iota 5152  df-fun 5189  df-fn 5190  df-f 5191  df-f1 5192  df-fo 5193  df-f1o 5194  df-fv 5195  df-riota 5797  df-ov 5844  df-oprab 5845  df-mpo 5846  df-1st 6105  df-2nd 6106  df-recs 6269  df-frec 6355  df-pnf 7931  df-mnf 7932  df-xr 7933  df-ltxr 7934  df-le 7935  df-sub 8067  df-neg 8068  df-reap 8469  df-ap 8476  df-div 8565  df-inn 8854  df-2 8912  df-n0 9111  df-z 9188  df-uz 9463  df-seqfrec 10377  df-exp 10451
This theorem is referenced by:  binom21  10563  binom2sub  10564  mulbinom2  10567  binom3  10568  nn0opthlem1d  10629  resqrexlemover  10948  resqrexlemcalc1  10952  abstri  11042  amgm2  11056  bdtrilem  11176  pythagtriplem1  12193  pythagtriplem12  12203
  Copyright terms: Public domain W3C validator