Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > binom2 | Unicode version |
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006.) |
Ref | Expression |
---|---|
binom2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl 7836 | . . . 4 | |
2 | simpl 108 | . . . 4 | |
3 | simpr 109 | . . . 4 | |
4 | 1, 2, 3 | adddid 7881 | . . 3 |
5 | 2, 3, 2 | adddird 7882 | . . . . . 6 |
6 | 3, 2 | mulcomd 7878 | . . . . . . 7 |
7 | 6 | oveq2d 5830 | . . . . . 6 |
8 | 5, 7 | eqtrd 2187 | . . . . 5 |
9 | 2, 3, 3 | adddird 7882 | . . . . 5 |
10 | 8, 9 | oveq12d 5832 | . . . 4 |
11 | 2, 2 | mulcld 7877 | . . . . . 6 |
12 | 2, 3 | mulcld 7877 | . . . . . 6 |
13 | 11, 12 | addcld 7876 | . . . . 5 |
14 | 3, 3 | mulcld 7877 | . . . . 5 |
15 | 13, 12, 14 | addassd 7879 | . . . 4 |
16 | 11, 12, 12 | addassd 7879 | . . . . 5 |
17 | 16 | oveq1d 5829 | . . . 4 |
18 | 10, 15, 17 | 3eqtr2d 2193 | . . 3 |
19 | 4, 18 | eqtrd 2187 | . 2 |
20 | sqval 10455 | . . 3 | |
21 | 1, 20 | syl 14 | . 2 |
22 | sqval 10455 | . . . . 5 | |
23 | 2, 22 | syl 14 | . . . 4 |
24 | 12 | 2timesd 9054 | . . . 4 |
25 | 23, 24 | oveq12d 5832 | . . 3 |
26 | sqval 10455 | . . . 4 | |
27 | 3, 26 | syl 14 | . . 3 |
28 | 25, 27 | oveq12d 5832 | . 2 |
29 | 19, 21, 28 | 3eqtr4d 2197 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 (class class class)co 5814 cc 7709 caddc 7714 cmul 7716 c2 8863 cexp 10396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 ax-cnex 7802 ax-resscn 7803 ax-1cn 7804 ax-1re 7805 ax-icn 7806 ax-addcl 7807 ax-addrcl 7808 ax-mulcl 7809 ax-mulrcl 7810 ax-addcom 7811 ax-mulcom 7812 ax-addass 7813 ax-mulass 7814 ax-distr 7815 ax-i2m1 7816 ax-0lt1 7817 ax-1rid 7818 ax-0id 7819 ax-rnegex 7820 ax-precex 7821 ax-cnre 7822 ax-pre-ltirr 7823 ax-pre-ltwlin 7824 ax-pre-lttrn 7825 ax-pre-apti 7826 ax-pre-ltadd 7827 ax-pre-mulgt0 7828 ax-pre-mulext 7829 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-nel 2420 df-ral 2437 df-rex 2438 df-reu 2439 df-rmo 2440 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-if 3502 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-po 4251 df-iso 4252 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-riota 5770 df-ov 5817 df-oprab 5818 df-mpo 5819 df-1st 6078 df-2nd 6079 df-recs 6242 df-frec 6328 df-pnf 7893 df-mnf 7894 df-xr 7895 df-ltxr 7896 df-le 7897 df-sub 8027 df-neg 8028 df-reap 8429 df-ap 8436 df-div 8525 df-inn 8813 df-2 8871 df-n0 9070 df-z 9147 df-uz 9419 df-seqfrec 10323 df-exp 10397 |
This theorem is referenced by: binom21 10508 binom2sub 10509 mulbinom2 10512 binom3 10513 nn0opthlem1d 10571 resqrexlemover 10887 resqrexlemcalc1 10891 abstri 10981 amgm2 10995 bdtrilem 11115 |
Copyright terms: Public domain | W3C validator |