ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  binom2 Unicode version

Theorem binom2 10873
Description: The square of a binomial. (Contributed by FL, 10-Dec-2006.)
Assertion
Ref Expression
binom2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )

Proof of Theorem binom2
StepHypRef Expression
1 addcl 8124 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  +  B
)  e.  CC )
2 simpl 109 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
3 simpr 110 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
41, 2, 3adddid 8171 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  +  B
)  x.  A )  +  ( ( A  +  B )  x.  B ) ) )
52, 3, 2adddird 8172 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( B  x.  A ) ) )
63, 2mulcomd 8168 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  A
)  =  ( A  x.  B ) )
76oveq2d 6017 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( B  x.  A ) )  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
85, 7eqtrd 2262 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  A
)  =  ( ( A  x.  A )  +  ( A  x.  B ) ) )
92, 3, 3adddird 8172 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  B
)  =  ( ( A  x.  B )  +  ( B  x.  B ) ) )
108, 9oveq12d 6019 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
112, 2mulcld 8167 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  A
)  e.  CC )
122, 3mulcld 8167 . . . . . 6  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A  x.  B
)  e.  CC )
1311, 12addcld 8166 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  x.  A )  +  ( A  x.  B ) )  e.  CC )
143, 3mulcld 8167 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B  x.  B
)  e.  CC )
1513, 12, 14addassd 8169 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( A  x.  B ) )  +  ( ( A  x.  B )  +  ( B  x.  B
) ) ) )
1611, 12, 12addassd 8169 . . . . 5  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  x.  A )  +  ( A  x.  B
) )  +  ( A  x.  B ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
1716oveq1d 6016 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( ( A  x.  A )  +  ( A  x.  B ) )  +  ( A  x.  B
) )  +  ( B  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
1810, 15, 173eqtr2d 2268 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A  +  B )  x.  A )  +  ( ( A  +  B
)  x.  B ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
194, 18eqtrd 2262 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B )  x.  ( A  +  B )
)  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
20 sqval 10819 . . 3  |-  ( ( A  +  B )  e.  CC  ->  (
( A  +  B
) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B
) ) )
211, 20syl 14 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( A  +  B )  x.  ( A  +  B ) ) )
22 sqval 10819 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 2 )  =  ( A  x.  A
) )
232, 22syl 14 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 2 )  =  ( A  x.  A ) )
24122timesd 9354 . . . 4  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  ( A  x.  B )
)  =  ( ( A  x.  B )  +  ( A  x.  B ) ) )
2523, 24oveq12d 6019 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A ^
2 )  +  ( 2  x.  ( A  x.  B ) ) )  =  ( ( A  x.  A )  +  ( ( A  x.  B )  +  ( A  x.  B
) ) ) )
26 sqval 10819 . . . 4  |-  ( B  e.  CC  ->  ( B ^ 2 )  =  ( B  x.  B
) )
273, 26syl 14 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 2 )  =  ( B  x.  B ) )
2825, 27oveq12d 6019 . 2  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B )
) )  +  ( B ^ 2 ) )  =  ( ( ( A  x.  A
)  +  ( ( A  x.  B )  +  ( A  x.  B ) ) )  +  ( B  x.  B ) ) )
2919, 21, 283eqtr4d 2272 1  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( ( A  +  B ) ^ 2 )  =  ( ( ( A ^ 2 )  +  ( 2  x.  ( A  x.  B ) ) )  +  ( B ^
2 ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200  (class class class)co 6001   CCcc 7997    + caddc 8002    x. cmul 8004   2c2 9161   ^cexp 10760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-mulrcl 8098  ax-addcom 8099  ax-mulcom 8100  ax-addass 8101  ax-mulass 8102  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-1rid 8106  ax-0id 8107  ax-rnegex 8108  ax-precex 8109  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115  ax-pre-mulgt0 8116  ax-pre-mulext 8117
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-reap 8722  df-ap 8729  df-div 8820  df-inn 9111  df-2 9169  df-n0 9370  df-z 9447  df-uz 9723  df-seqfrec 10670  df-exp 10761
This theorem is referenced by:  binom21  10874  binom2sub  10875  mulbinom2  10878  binom3  10879  nn0opthlem1d  10942  resqrexlemover  11521  resqrexlemcalc1  11525  abstri  11615  amgm2  11629  bdtrilem  11750  pythagtriplem1  12788  pythagtriplem12  12798
  Copyright terms: Public domain W3C validator