![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlidd | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addlidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addlid 8160 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7967 ax-icn 7969 ax-addcl 7970 ax-mulcl 7972 ax-addcom 7974 ax-i2m1 7979 ax-0id 7982 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: negeu 8212 ltadd2 8440 subge0 8496 sublt0d 8591 un0addcl 9276 lincmb01cmp 10072 modsumfzodifsn 10470 rennim 11149 max0addsup 11366 fsumsplit 11553 sumsplitdc 11578 fisum0diag2 11593 isumsplit 11637 arisum2 11645 efaddlem 11820 eftlub 11836 ef4p 11840 moddvds 11945 gcdaddm 12124 gcdmultipled 12133 bezoutlemb 12140 pcmpt 12484 4sqlem11 12542 mulgnn0dir 13225 limcimolemlt 14843 dvcnp2cntop 14878 dvmptcmulcn 14900 dveflem 14905 dvef 14906 plymullem1 14927 sin0pilem1 14957 sin2kpi 14987 cos2kpi 14988 coshalfpim 14999 sinkpi 15023 |
Copyright terms: Public domain | W3C validator |