ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlidd Unicode version

Theorem addlidd 8171
Description:  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
addlidd  |-  ( ph  ->  ( 0  +  A
)  =  A )

Proof of Theorem addlidd
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addlid 8160 . 2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 0  +  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164  (class class class)co 5919   CCcc 7872   0cc0 7874    + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1458  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-4 1521  ax-17 1537  ax-ial 1545  ax-ext 2175  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-addcom 7974  ax-i2m1 7979  ax-0id 7982
This theorem depends on definitions:  df-bi 117  df-cleq 2186  df-clel 2189
This theorem is referenced by:  negeu  8212  ltadd2  8440  subge0  8496  sublt0d  8591  un0addcl  9276  lincmb01cmp  10072  modsumfzodifsn  10470  rennim  11149  max0addsup  11366  fsumsplit  11553  sumsplitdc  11578  fisum0diag2  11593  isumsplit  11637  arisum2  11645  efaddlem  11820  eftlub  11836  ef4p  11840  moddvds  11945  gcdaddm  12124  gcdmultipled  12133  bezoutlemb  12140  pcmpt  12484  4sqlem11  12542  mulgnn0dir  13225  limcimolemlt  14843  dvcnp2cntop  14878  dvmptcmulcn  14900  dveflem  14905  dvef  14906  plymullem1  14927  sin0pilem1  14957  sin2kpi  14987  cos2kpi  14988  coshalfpim  14999  sinkpi  15023
  Copyright terms: Public domain W3C validator