ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlidd Unicode version

Theorem addlidd 8176
Description:  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
addlidd  |-  ( ph  ->  ( 0  +  A
)  =  A )

Proof of Theorem addlidd
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addlid 8165 . 2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 0  +  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5922   CCcc 7877   0cc0 7879    + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977  ax-addcom 7979  ax-i2m1 7984  ax-0id 7987
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  negeu  8217  ltadd2  8446  subge0  8502  sublt0d  8597  un0addcl  9282  lincmb01cmp  10078  modsumfzodifsn  10488  rennim  11167  max0addsup  11384  fsumsplit  11572  sumsplitdc  11597  fisum0diag2  11612  isumsplit  11656  arisum2  11664  efaddlem  11839  eftlub  11855  ef4p  11859  moddvds  11964  gcdaddm  12151  gcdmultipled  12160  bezoutlemb  12167  pcmpt  12512  4sqlem11  12570  mulgnn0dir  13282  limcimolemlt  14900  dvcnp2cntop  14935  dvmptcmulcn  14957  dveflem  14962  dvef  14963  plymullem1  14984  sin0pilem1  15017  sin2kpi  15047  cos2kpi  15048  coshalfpim  15059  sinkpi  15083
  Copyright terms: Public domain W3C validator