![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > addlidd | Unicode version |
Description: ![]() |
Ref | Expression |
---|---|
muld.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
addlidd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | muld.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | addlid 8158 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-4 1521 ax-17 1537 ax-ial 1545 ax-ext 2175 ax-1cn 7965 ax-icn 7967 ax-addcl 7968 ax-mulcl 7970 ax-addcom 7972 ax-i2m1 7977 ax-0id 7980 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-clel 2189 |
This theorem is referenced by: negeu 8210 ltadd2 8438 subge0 8494 sublt0d 8589 un0addcl 9273 lincmb01cmp 10069 modsumfzodifsn 10467 rennim 11146 max0addsup 11363 fsumsplit 11550 sumsplitdc 11575 fisum0diag2 11590 isumsplit 11634 arisum2 11642 efaddlem 11817 eftlub 11833 ef4p 11837 moddvds 11942 gcdaddm 12121 gcdmultipled 12130 bezoutlemb 12137 pcmpt 12481 4sqlem11 12539 mulgnn0dir 13222 limcimolemlt 14818 dvcnp2cntop 14848 dvmptcmulcn 14868 dveflem 14872 dvef 14873 plymullem1 14894 sin0pilem1 14916 sin2kpi 14946 cos2kpi 14947 coshalfpim 14958 sinkpi 14982 |
Copyright terms: Public domain | W3C validator |