ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlidd Unicode version

Theorem addlidd 8193
Description:  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
addlidd  |-  ( ph  ->  ( 0  +  A
)  =  A )

Proof of Theorem addlidd
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addlid 8182 . 2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 0  +  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167  (class class class)co 5925   CCcc 7894   0cc0 7896    + caddc 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-4 1524  ax-17 1540  ax-ial 1548  ax-ext 2178  ax-1cn 7989  ax-icn 7991  ax-addcl 7992  ax-mulcl 7994  ax-addcom 7996  ax-i2m1 8001  ax-0id 8004
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-clel 2192
This theorem is referenced by:  negeu  8234  ltadd2  8463  subge0  8519  sublt0d  8614  un0addcl  9299  lincmb01cmp  10095  modsumfzodifsn  10505  rennim  11184  max0addsup  11401  fsumsplit  11589  sumsplitdc  11614  fisum0diag2  11629  isumsplit  11673  arisum2  11681  efaddlem  11856  eftlub  11872  ef4p  11876  moddvds  11981  gcdaddm  12176  gcdmultipled  12185  bezoutlemb  12192  pcmpt  12537  4sqlem11  12595  mulgnn0dir  13358  limcimolemlt  14984  dvcnp2cntop  15019  dvmptcmulcn  15041  dveflem  15046  dvef  15047  plymullem1  15068  sin0pilem1  15101  sin2kpi  15131  cos2kpi  15132  coshalfpim  15143  sinkpi  15167
  Copyright terms: Public domain W3C validator