ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addlidd Unicode version

Theorem addlidd 8237
Description:  0 is a left identity for addition. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
muld.1  |-  ( ph  ->  A  e.  CC )
Assertion
Ref Expression
addlidd  |-  ( ph  ->  ( 0  +  A
)  =  A )

Proof of Theorem addlidd
StepHypRef Expression
1 muld.1 . 2  |-  ( ph  ->  A  e.  CC )
2 addlid 8226 . 2  |-  ( A  e.  CC  ->  (
0  +  A )  =  A )
31, 2syl 14 1  |-  ( ph  ->  ( 0  +  A
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177  (class class class)co 5956   CCcc 7938   0cc0 7940    + caddc 7943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-4 1534  ax-17 1550  ax-ial 1558  ax-ext 2188  ax-1cn 8033  ax-icn 8035  ax-addcl 8036  ax-mulcl 8038  ax-addcom 8040  ax-i2m1 8045  ax-0id 8048
This theorem depends on definitions:  df-bi 117  df-cleq 2199  df-clel 2202
This theorem is referenced by:  negeu  8278  ltadd2  8507  subge0  8563  sublt0d  8658  un0addcl  9343  lincmb01cmp  10140  modsumfzodifsn  10558  ccatlid  11080  swrdfv0  11125  swrdpfx  11178  pfxpfx  11179  cats1un  11192  rennim  11383  max0addsup  11600  fsumsplit  11788  sumsplitdc  11813  fisum0diag2  11828  isumsplit  11872  arisum2  11880  efaddlem  12055  eftlub  12071  ef4p  12075  moddvds  12180  gcdaddm  12375  gcdmultipled  12384  bezoutlemb  12391  pcmpt  12736  4sqlem11  12794  mulgnn0dir  13558  limcimolemlt  15206  dvcnp2cntop  15241  dvmptcmulcn  15263  dveflem  15268  dvef  15269  plymullem1  15290  sin0pilem1  15323  sin2kpi  15353  cos2kpi  15354  coshalfpim  15365  sinkpi  15389
  Copyright terms: Public domain W3C validator