| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > axmulgt0 | GIF version | ||
| Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 8104 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
| Ref | Expression |
|---|---|
| axmulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-pre-mulgt0 8104 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | |
| 2 | 0re 8134 | . . . 4 ⊢ 0 ∈ ℝ | |
| 3 | ltxrlt 8200 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) | |
| 4 | 2, 3 | mpan 424 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) |
| 5 | ltxrlt 8200 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ 0 <ℝ 𝐵)) | |
| 6 | 2, 5 | mpan 424 | . . 3 ⊢ (𝐵 ∈ ℝ → (0 < 𝐵 ↔ 0 <ℝ 𝐵)) |
| 7 | 4, 6 | bi2anan9 608 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
| 8 | remulcl 8115 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
| 9 | ltxrlt 8200 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 <ℝ (𝐴 · 𝐵))) | |
| 10 | 2, 8, 9 | sylancr 414 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 <ℝ (𝐴 · 𝐵))) |
| 11 | 1, 7, 10 | 3imtr4d 203 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 class class class wbr 4082 (class class class)co 5994 ℝcr 7986 0cc0 7987 <ℝ cltrr 7991 · cmul 7992 < clt 8169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1re 8081 ax-addrcl 8084 ax-mulrcl 8086 ax-rnegex 8096 ax-pre-mulgt0 8104 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-xp 4722 df-pnf 8171 df-mnf 8172 df-ltxr 8174 |
| This theorem is referenced by: mulgt0 8209 mulgt0i 8244 sin02gt0 12261 sinq12gt0 15489 |
| Copyright terms: Public domain | W3C validator |