Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > axmulgt0 | GIF version |
Description: The product of two positive reals is positive. Axiom for real and complex numbers, derived from set theory. (This restates ax-pre-mulgt0 7891 with ordering on the extended reals.) (Contributed by NM, 13-Oct-2005.) |
Ref | Expression |
---|---|
axmulgt0 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-pre-mulgt0 7891 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵) → 0 <ℝ (𝐴 · 𝐵))) | |
2 | 0re 7920 | . . . 4 ⊢ 0 ∈ ℝ | |
3 | ltxrlt 7985 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) | |
4 | 2, 3 | mpan 422 | . . 3 ⊢ (𝐴 ∈ ℝ → (0 < 𝐴 ↔ 0 <ℝ 𝐴)) |
5 | ltxrlt 7985 | . . . 4 ⊢ ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ 0 <ℝ 𝐵)) | |
6 | 2, 5 | mpan 422 | . . 3 ⊢ (𝐵 ∈ ℝ → (0 < 𝐵 ↔ 0 <ℝ 𝐵)) |
7 | 4, 6 | bi2anan9 601 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) ↔ (0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵))) |
8 | remulcl 7902 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | |
9 | ltxrlt 7985 | . . 3 ⊢ ((0 ∈ ℝ ∧ (𝐴 · 𝐵) ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 <ℝ (𝐴 · 𝐵))) | |
10 | 2, 8, 9 | sylancr 412 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < (𝐴 · 𝐵) ↔ 0 <ℝ (𝐴 · 𝐵))) |
11 | 1, 7, 10 | 3imtr4d 202 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∧ 0 < 𝐵) → 0 < (𝐴 · 𝐵))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2141 class class class wbr 3989 (class class class)co 5853 ℝcr 7773 0cc0 7774 <ℝ cltrr 7778 · cmul 7779 < clt 7954 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1re 7868 ax-addrcl 7871 ax-mulrcl 7873 ax-rnegex 7883 ax-pre-mulgt0 7891 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-xp 4617 df-pnf 7956 df-mnf 7957 df-ltxr 7959 |
This theorem is referenced by: mulgt0 7994 mulgt0i 8029 sin02gt0 11726 sinq12gt0 13545 |
Copyright terms: Public domain | W3C validator |