![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > brdomi | GIF version |
Description: Dominance relation. (Contributed by Mario Carneiro, 26-Apr-2015.) |
Ref | Expression |
---|---|
brdomi | ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reldom 6799 | . . . 4 ⊢ Rel ≼ | |
2 | 1 | brrelex2i 4703 | . . 3 ⊢ (𝐴 ≼ 𝐵 → 𝐵 ∈ V) |
3 | brdomg 6802 | . . 3 ⊢ (𝐵 ∈ V → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) | |
4 | 2, 3 | syl 14 | . 2 ⊢ (𝐴 ≼ 𝐵 → (𝐴 ≼ 𝐵 ↔ ∃𝑓 𝑓:𝐴–1-1→𝐵)) |
5 | 4 | ibi 176 | 1 ⊢ (𝐴 ≼ 𝐵 → ∃𝑓 𝑓:𝐴–1-1→𝐵) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 class class class wbr 4029 –1-1→wf1 5251 ≼ cdom 6793 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-xp 4665 df-rel 4666 df-cnv 4667 df-dm 4669 df-rn 4670 df-fn 5257 df-f 5258 df-f1 5259 df-dom 6796 |
This theorem is referenced by: 2dom 6859 xpdom2 6885 dom0 6894 isinfinf 6953 infm 6960 djudom 7152 difinfsn 7159 exmidfodomrlemim 7261 1dom1el 15483 |
Copyright terms: Public domain | W3C validator |