Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  domomsubct Unicode version

Theorem domomsubct 16012
Description: A set dominated by  om is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
Assertion
Ref Expression
domomsubct  |-  ( A  ~<_  om  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
Distinct variable group:    A, f, s

Proof of Theorem domomsubct
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 brdomi 6845 . 2  |-  ( A  ~<_  om  ->  E. g 
g : A -1-1-> om )
2 imassrn 5038 . . . . 5  |-  ( g
" A )  C_  ran  g
3 f1rn 5489 . . . . 5  |-  ( g : A -1-1-> om  ->  ran  g  C_  om )
42, 3sstrid 3205 . . . 4  |-  ( g : A -1-1-> om  ->  ( g " A ) 
C_  om )
5 ssid 3214 . . . . . . . . 9  |-  A  C_  A
6 f1ores 5544 . . . . . . . . 9  |-  ( ( g : A -1-1-> om  /\  A  C_  A )  ->  ( g  |`  A ) : A -1-1-onto-> ( g " A
) )
75, 6mpan2 425 . . . . . . . 8  |-  ( g : A -1-1-> om  ->  ( g  |`  A ) : A -1-1-onto-> ( g " A
) )
8 f1fn 5490 . . . . . . . . . 10  |-  ( g : A -1-1-> om  ->  g  Fn  A )
9 fnresdm 5390 . . . . . . . . . 10  |-  ( g  Fn  A  ->  (
g  |`  A )  =  g )
108, 9syl 14 . . . . . . . . 9  |-  ( g : A -1-1-> om  ->  ( g  |`  A )  =  g )
1110f1oeq1d 5524 . . . . . . . 8  |-  ( g : A -1-1-> om  ->  ( ( g  |`  A ) : A -1-1-onto-> ( g " A
)  <->  g : A -1-1-onto-> (
g " A ) ) )
127, 11mpbid 147 . . . . . . 7  |-  ( g : A -1-1-> om  ->  g : A -1-1-onto-> ( g " A
) )
13 f1ocnv 5542 . . . . . . 7  |-  ( g : A -1-1-onto-> ( g " A
)  ->  `' g : ( g " A ) -1-1-onto-> A )
1412, 13syl 14 . . . . . 6  |-  ( g : A -1-1-> om  ->  `' g : ( g
" A ) -1-1-onto-> A )
15 f1ofo 5536 . . . . . 6  |-  ( `' g : ( g
" A ) -1-1-onto-> A  ->  `' g : ( g " A )
-onto-> A )
1614, 15syl 14 . . . . 5  |-  ( g : A -1-1-> om  ->  `' g : ( g
" A ) -onto-> A )
17 vex 2776 . . . . . . 7  |-  g  e. 
_V
1817cnvex 5226 . . . . . 6  |-  `' g  e.  _V
19 foeq1 5501 . . . . . 6  |-  ( f  =  `' g  -> 
( f : ( g " A )
-onto-> A  <->  `' g : ( g " A )
-onto-> A ) )
2018, 19spcev 2869 . . . . 5  |-  ( `' g : ( g
" A ) -onto-> A  ->  E. f  f : ( g " A
) -onto-> A )
2116, 20syl 14 . . . 4  |-  ( g : A -1-1-> om  ->  E. f  f : ( g " A )
-onto-> A )
2217imaex 5042 . . . . 5  |-  ( g
" A )  e. 
_V
23 sseq1 3217 . . . . . 6  |-  ( s  =  ( g " A )  ->  (
s  C_  om  <->  ( g " A )  C_  om )
)
24 foeq2 5502 . . . . . . 7  |-  ( s  =  ( g " A )  ->  (
f : s -onto-> A  <-> 
f : ( g
" A ) -onto-> A ) )
2524exbidv 1849 . . . . . 6  |-  ( s  =  ( g " A )  ->  ( E. f  f :
s -onto-> A  <->  E. f  f : ( g " A
) -onto-> A ) )
2623, 25anbi12d 473 . . . . 5  |-  ( s  =  ( g " A )  ->  (
( s  C_  om  /\  E. f  f : s
-onto-> A )  <->  ( (
g " A ) 
C_  om  /\  E. f 
f : ( g
" A ) -onto-> A ) ) )
2722, 26spcev 2869 . . . 4  |-  ( ( ( g " A
)  C_  om  /\  E. f  f : ( g " A )
-onto-> A )  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
284, 21, 27syl2anc 411 . . 3  |-  ( g : A -1-1-> om  ->  E. s ( s  C_  om 
/\  E. f  f : s -onto-> A ) )
2928exlimiv 1622 . 2  |-  ( E. g  g : A -1-1-> om 
->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A ) )
301, 29syl 14 1  |-  ( A  ~<_  om  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    C_ wss 3167   class class class wbr 4047   omcom 4642   `'ccnv 4678   ran crn 4680    |` cres 4681   "cima 4682    Fn wfn 5271   -1-1->wf1 5273   -onto->wfo 5274   -1-1-onto->wf1o 5275    ~<_ cdom 6833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-dom 6836
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator