| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > domomsubct | Unicode version | ||
| Description: A set dominated by |
| Ref | Expression |
|---|---|
| domomsubct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6845 |
. 2
| |
| 2 | imassrn 5038 |
. . . . 5
| |
| 3 | f1rn 5489 |
. . . . 5
| |
| 4 | 2, 3 | sstrid 3205 |
. . . 4
|
| 5 | ssid 3214 |
. . . . . . . . 9
| |
| 6 | f1ores 5544 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpan2 425 |
. . . . . . . 8
|
| 8 | f1fn 5490 |
. . . . . . . . . 10
| |
| 9 | fnresdm 5390 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | 10 | f1oeq1d 5524 |
. . . . . . . 8
|
| 12 | 7, 11 | mpbid 147 |
. . . . . . 7
|
| 13 | f1ocnv 5542 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 14 |
. . . . . 6
|
| 15 | f1ofo 5536 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | vex 2776 |
. . . . . . 7
| |
| 18 | 17 | cnvex 5226 |
. . . . . 6
|
| 19 | foeq1 5501 |
. . . . . 6
| |
| 20 | 18, 19 | spcev 2869 |
. . . . 5
|
| 21 | 16, 20 | syl 14 |
. . . 4
|
| 22 | 17 | imaex 5042 |
. . . . 5
|
| 23 | sseq1 3217 |
. . . . . 6
| |
| 24 | foeq2 5502 |
. . . . . . 7
| |
| 25 | 24 | exbidv 1849 |
. . . . . 6
|
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 22, 26 | spcev 2869 |
. . . 4
|
| 28 | 4, 21, 27 | syl2anc 411 |
. . 3
|
| 29 | 28 | exlimiv 1622 |
. 2
|
| 30 | 1, 29 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-br 4048 df-opab 4110 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-fun 5278 df-fn 5279 df-f 5280 df-f1 5281 df-fo 5282 df-f1o 5283 df-dom 6836 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |