| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > domomsubct | Unicode version | ||
| Description: A set dominated by |
| Ref | Expression |
|---|---|
| domomsubct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6817 |
. 2
| |
| 2 | imassrn 5021 |
. . . . 5
| |
| 3 | f1rn 5467 |
. . . . 5
| |
| 4 | 2, 3 | sstrid 3195 |
. . . 4
|
| 5 | ssid 3204 |
. . . . . . . . 9
| |
| 6 | f1ores 5522 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpan2 425 |
. . . . . . . 8
|
| 8 | f1fn 5468 |
. . . . . . . . . 10
| |
| 9 | fnresdm 5370 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | 10 | f1oeq1d 5502 |
. . . . . . . 8
|
| 12 | 7, 11 | mpbid 147 |
. . . . . . 7
|
| 13 | f1ocnv 5520 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 14 |
. . . . . 6
|
| 15 | f1ofo 5514 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | vex 2766 |
. . . . . . 7
| |
| 18 | 17 | cnvex 5209 |
. . . . . 6
|
| 19 | foeq1 5479 |
. . . . . 6
| |
| 20 | 18, 19 | spcev 2859 |
. . . . 5
|
| 21 | 16, 20 | syl 14 |
. . . 4
|
| 22 | 17 | imaex 5025 |
. . . . 5
|
| 23 | sseq1 3207 |
. . . . . 6
| |
| 24 | foeq2 5480 |
. . . . . . 7
| |
| 25 | 24 | exbidv 1839 |
. . . . . 6
|
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 22, 26 | spcev 2859 |
. . . 4
|
| 28 | 4, 21, 27 | syl2anc 411 |
. . 3
|
| 29 | 28 | exlimiv 1612 |
. 2
|
| 30 | 1, 29 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-dom 6810 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |