Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  domomsubct Unicode version

Theorem domomsubct 15732
Description: A set dominated by  om is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
Assertion
Ref Expression
domomsubct  |-  ( A  ~<_  om  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
Distinct variable group:    A, f, s

Proof of Theorem domomsubct
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 brdomi 6817 . 2  |-  ( A  ~<_  om  ->  E. g 
g : A -1-1-> om )
2 imassrn 5021 . . . . 5  |-  ( g
" A )  C_  ran  g
3 f1rn 5467 . . . . 5  |-  ( g : A -1-1-> om  ->  ran  g  C_  om )
42, 3sstrid 3195 . . . 4  |-  ( g : A -1-1-> om  ->  ( g " A ) 
C_  om )
5 ssid 3204 . . . . . . . . 9  |-  A  C_  A
6 f1ores 5522 . . . . . . . . 9  |-  ( ( g : A -1-1-> om  /\  A  C_  A )  ->  ( g  |`  A ) : A -1-1-onto-> ( g " A
) )
75, 6mpan2 425 . . . . . . . 8  |-  ( g : A -1-1-> om  ->  ( g  |`  A ) : A -1-1-onto-> ( g " A
) )
8 f1fn 5468 . . . . . . . . . 10  |-  ( g : A -1-1-> om  ->  g  Fn  A )
9 fnresdm 5370 . . . . . . . . . 10  |-  ( g  Fn  A  ->  (
g  |`  A )  =  g )
108, 9syl 14 . . . . . . . . 9  |-  ( g : A -1-1-> om  ->  ( g  |`  A )  =  g )
1110f1oeq1d 5502 . . . . . . . 8  |-  ( g : A -1-1-> om  ->  ( ( g  |`  A ) : A -1-1-onto-> ( g " A
)  <->  g : A -1-1-onto-> (
g " A ) ) )
127, 11mpbid 147 . . . . . . 7  |-  ( g : A -1-1-> om  ->  g : A -1-1-onto-> ( g " A
) )
13 f1ocnv 5520 . . . . . . 7  |-  ( g : A -1-1-onto-> ( g " A
)  ->  `' g : ( g " A ) -1-1-onto-> A )
1412, 13syl 14 . . . . . 6  |-  ( g : A -1-1-> om  ->  `' g : ( g
" A ) -1-1-onto-> A )
15 f1ofo 5514 . . . . . 6  |-  ( `' g : ( g
" A ) -1-1-onto-> A  ->  `' g : ( g " A )
-onto-> A )
1614, 15syl 14 . . . . 5  |-  ( g : A -1-1-> om  ->  `' g : ( g
" A ) -onto-> A )
17 vex 2766 . . . . . . 7  |-  g  e. 
_V
1817cnvex 5209 . . . . . 6  |-  `' g  e.  _V
19 foeq1 5479 . . . . . 6  |-  ( f  =  `' g  -> 
( f : ( g " A )
-onto-> A  <->  `' g : ( g " A )
-onto-> A ) )
2018, 19spcev 2859 . . . . 5  |-  ( `' g : ( g
" A ) -onto-> A  ->  E. f  f : ( g " A
) -onto-> A )
2116, 20syl 14 . . . 4  |-  ( g : A -1-1-> om  ->  E. f  f : ( g " A )
-onto-> A )
2217imaex 5025 . . . . 5  |-  ( g
" A )  e. 
_V
23 sseq1 3207 . . . . . 6  |-  ( s  =  ( g " A )  ->  (
s  C_  om  <->  ( g " A )  C_  om )
)
24 foeq2 5480 . . . . . . 7  |-  ( s  =  ( g " A )  ->  (
f : s -onto-> A  <-> 
f : ( g
" A ) -onto-> A ) )
2524exbidv 1839 . . . . . 6  |-  ( s  =  ( g " A )  ->  ( E. f  f :
s -onto-> A  <->  E. f  f : ( g " A
) -onto-> A ) )
2623, 25anbi12d 473 . . . . 5  |-  ( s  =  ( g " A )  ->  (
( s  C_  om  /\  E. f  f : s
-onto-> A )  <->  ( (
g " A ) 
C_  om  /\  E. f 
f : ( g
" A ) -onto-> A ) ) )
2722, 26spcev 2859 . . . 4  |-  ( ( ( g " A
)  C_  om  /\  E. f  f : ( g " A )
-onto-> A )  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
284, 21, 27syl2anc 411 . . 3  |-  ( g : A -1-1-> om  ->  E. s ( s  C_  om 
/\  E. f  f : s -onto-> A ) )
2928exlimiv 1612 . 2  |-  ( E. g  g : A -1-1-> om 
->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A ) )
301, 29syl 14 1  |-  ( A  ~<_  om  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364   E.wex 1506    C_ wss 3157   class class class wbr 4034   omcom 4627   `'ccnv 4663   ran crn 4665    |` cres 4666   "cima 4667    Fn wfn 5254   -1-1->wf1 5256   -onto->wfo 5257   -1-1-onto->wf1o 5258    ~<_ cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-dom 6810
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator