Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  domomsubct Unicode version

Theorem domomsubct 16396
Description: A set dominated by  om is subcountable. (Contributed by Jim Kingdon, 11-Nov-2025.)
Assertion
Ref Expression
domomsubct  |-  ( A  ~<_  om  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
Distinct variable group:    A, f, s

Proof of Theorem domomsubct
Dummy variable  g is distinct from all other variables.
StepHypRef Expression
1 brdomi 6906 . 2  |-  ( A  ~<_  om  ->  E. g 
g : A -1-1-> om )
2 imassrn 5079 . . . . 5  |-  ( g
" A )  C_  ran  g
3 f1rn 5534 . . . . 5  |-  ( g : A -1-1-> om  ->  ran  g  C_  om )
42, 3sstrid 3235 . . . 4  |-  ( g : A -1-1-> om  ->  ( g " A ) 
C_  om )
5 ssid 3244 . . . . . . . . 9  |-  A  C_  A
6 f1ores 5589 . . . . . . . . 9  |-  ( ( g : A -1-1-> om  /\  A  C_  A )  ->  ( g  |`  A ) : A -1-1-onto-> ( g " A
) )
75, 6mpan2 425 . . . . . . . 8  |-  ( g : A -1-1-> om  ->  ( g  |`  A ) : A -1-1-onto-> ( g " A
) )
8 f1fn 5535 . . . . . . . . . 10  |-  ( g : A -1-1-> om  ->  g  Fn  A )
9 fnresdm 5432 . . . . . . . . . 10  |-  ( g  Fn  A  ->  (
g  |`  A )  =  g )
108, 9syl 14 . . . . . . . . 9  |-  ( g : A -1-1-> om  ->  ( g  |`  A )  =  g )
1110f1oeq1d 5569 . . . . . . . 8  |-  ( g : A -1-1-> om  ->  ( ( g  |`  A ) : A -1-1-onto-> ( g " A
)  <->  g : A -1-1-onto-> (
g " A ) ) )
127, 11mpbid 147 . . . . . . 7  |-  ( g : A -1-1-> om  ->  g : A -1-1-onto-> ( g " A
) )
13 f1ocnv 5587 . . . . . . 7  |-  ( g : A -1-1-onto-> ( g " A
)  ->  `' g : ( g " A ) -1-1-onto-> A )
1412, 13syl 14 . . . . . 6  |-  ( g : A -1-1-> om  ->  `' g : ( g
" A ) -1-1-onto-> A )
15 f1ofo 5581 . . . . . 6  |-  ( `' g : ( g
" A ) -1-1-onto-> A  ->  `' g : ( g " A )
-onto-> A )
1614, 15syl 14 . . . . 5  |-  ( g : A -1-1-> om  ->  `' g : ( g
" A ) -onto-> A )
17 vex 2802 . . . . . . 7  |-  g  e. 
_V
1817cnvex 5267 . . . . . 6  |-  `' g  e.  _V
19 foeq1 5546 . . . . . 6  |-  ( f  =  `' g  -> 
( f : ( g " A )
-onto-> A  <->  `' g : ( g " A )
-onto-> A ) )
2018, 19spcev 2898 . . . . 5  |-  ( `' g : ( g
" A ) -onto-> A  ->  E. f  f : ( g " A
) -onto-> A )
2116, 20syl 14 . . . 4  |-  ( g : A -1-1-> om  ->  E. f  f : ( g " A )
-onto-> A )
2217imaex 5083 . . . . 5  |-  ( g
" A )  e. 
_V
23 sseq1 3247 . . . . . 6  |-  ( s  =  ( g " A )  ->  (
s  C_  om  <->  ( g " A )  C_  om )
)
24 foeq2 5547 . . . . . . 7  |-  ( s  =  ( g " A )  ->  (
f : s -onto-> A  <-> 
f : ( g
" A ) -onto-> A ) )
2524exbidv 1871 . . . . . 6  |-  ( s  =  ( g " A )  ->  ( E. f  f :
s -onto-> A  <->  E. f  f : ( g " A
) -onto-> A ) )
2623, 25anbi12d 473 . . . . 5  |-  ( s  =  ( g " A )  ->  (
( s  C_  om  /\  E. f  f : s
-onto-> A )  <->  ( (
g " A ) 
C_  om  /\  E. f 
f : ( g
" A ) -onto-> A ) ) )
2722, 26spcev 2898 . . . 4  |-  ( ( ( g " A
)  C_  om  /\  E. f  f : ( g " A )
-onto-> A )  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
284, 21, 27syl2anc 411 . . 3  |-  ( g : A -1-1-> om  ->  E. s ( s  C_  om 
/\  E. f  f : s -onto-> A ) )
2928exlimiv 1644 . 2  |-  ( E. g  g : A -1-1-> om 
->  E. s ( s 
C_  om  /\  E. f 
f : s -onto-> A ) )
301, 29syl 14 1  |-  ( A  ~<_  om  ->  E. s
( s  C_  om  /\  E. f  f : s
-onto-> A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    C_ wss 3197   class class class wbr 4083   omcom 4682   `'ccnv 4718   ran crn 4720    |` cres 4721   "cima 4722    Fn wfn 5313   -1-1->wf1 5315   -onto->wfo 5316   -1-1-onto->wf1o 5317    ~<_ cdom 6894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-dom 6897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator