| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > domomsubct | Unicode version | ||
| Description: A set dominated by |
| Ref | Expression |
|---|---|
| domomsubct |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdomi 6868 |
. 2
| |
| 2 | imassrn 5055 |
. . . . 5
| |
| 3 | f1rn 5508 |
. . . . 5
| |
| 4 | 2, 3 | sstrid 3215 |
. . . 4
|
| 5 | ssid 3224 |
. . . . . . . . 9
| |
| 6 | f1ores 5563 |
. . . . . . . . 9
| |
| 7 | 5, 6 | mpan2 425 |
. . . . . . . 8
|
| 8 | f1fn 5509 |
. . . . . . . . . 10
| |
| 9 | fnresdm 5408 |
. . . . . . . . . 10
| |
| 10 | 8, 9 | syl 14 |
. . . . . . . . 9
|
| 11 | 10 | f1oeq1d 5543 |
. . . . . . . 8
|
| 12 | 7, 11 | mpbid 147 |
. . . . . . 7
|
| 13 | f1ocnv 5561 |
. . . . . . 7
| |
| 14 | 12, 13 | syl 14 |
. . . . . 6
|
| 15 | f1ofo 5555 |
. . . . . 6
| |
| 16 | 14, 15 | syl 14 |
. . . . 5
|
| 17 | vex 2782 |
. . . . . . 7
| |
| 18 | 17 | cnvex 5243 |
. . . . . 6
|
| 19 | foeq1 5520 |
. . . . . 6
| |
| 20 | 18, 19 | spcev 2878 |
. . . . 5
|
| 21 | 16, 20 | syl 14 |
. . . 4
|
| 22 | 17 | imaex 5059 |
. . . . 5
|
| 23 | sseq1 3227 |
. . . . . 6
| |
| 24 | foeq2 5521 |
. . . . . . 7
| |
| 25 | 24 | exbidv 1851 |
. . . . . 6
|
| 26 | 23, 25 | anbi12d 473 |
. . . . 5
|
| 27 | 22, 26 | spcev 2878 |
. . . 4
|
| 28 | 4, 21, 27 | syl2anc 411 |
. . 3
|
| 29 | 28 | exlimiv 1624 |
. 2
|
| 30 | 1, 29 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ral 2493 df-rex 2494 df-v 2781 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-dom 6859 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |