ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr Unicode version

Theorem 1idsr 7881
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )

Proof of Theorem 1idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7840 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5951 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
1R )  =  ( A  .R  1R )
)
3 id 19 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2220 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  .R  1R )  =  A
) )
5 df-1r 7845 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
65oveq2i 5955 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  1R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
7 1pr 7667 . . . . . 6  |-  1P  e.  P.
8 addclpr 7650 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
97, 7, 8mp2an 426 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
10 mulsrpr 7859 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
119, 7, 10mpanr12 439 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
12 distrprg 7701 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
137, 7, 12mp3an23 1342 . . . . . . . 8  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
14 1idpr 7705 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  =  x )
1514oveq1d 5959 . . . . . . . 8  |-  ( x  e.  P.  ->  (
( x  .P.  1P )  +P.  ( x  .P.  1P ) )  =  ( x  +P.  ( x  .P.  1P ) ) )
1613, 15eqtr2d 2239 . . . . . . 7  |-  ( x  e.  P.  ->  (
x  +P.  ( x  .P.  1P ) )  =  ( x  .P.  ( 1P  +P.  1P ) ) )
17 distrprg 7701 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
187, 7, 17mp3an23 1342 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
19 1idpr 7705 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  =  y )
2019oveq1d 5959 . . . . . . . 8  |-  ( y  e.  P.  ->  (
( y  .P.  1P )  +P.  ( y  .P. 
1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2118, 20eqtrd 2238 . . . . . . 7  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2216, 21oveqan12d 5963 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) ) )
23 simpl 109 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  x  e.  P. )
24 mulclpr 7685 . . . . . . . 8  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
2523, 7, 24sylancl 413 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  1P )  e.  P. )
26 mulclpr 7685 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
279, 26mpan2 425 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )
2827adantl 277 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
29 addassprg 7692 . . . . . . 7  |-  ( ( x  e.  P.  /\  ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  +P.  (
x  .P.  1P )
)  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
3023, 25, 28, 29syl3anc 1250 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
31 mulclpr 7685 . . . . . . . 8  |-  ( ( x  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
3223, 9, 31sylancl 413 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
33 simpr 110 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  y  e.  P. )
34 mulclpr 7685 . . . . . . . 8  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
3533, 7, 34sylancl 413 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  1P )  e.  P. )
36 addcomprg 7691 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( z  +P.  w
)  =  ( w  +P.  z ) )
3736adantl 277 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  +P.  w )  =  ( w  +P.  z ) )
38 addassprg 7692 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )  ->  (
( z  +P.  w
)  +P.  v )  =  ( z  +P.  ( w  +P.  v
) ) )
3938adantl 277 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  +P.  w )  +P.  v )  =  ( z  +P.  ( w  +P.  v ) ) )
4032, 33, 35, 37, 39caov12d 6128 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
4122, 30, 403eqtr3d 2246 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
429, 31mpan2 425 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  e. 
P. )
437, 34mpan2 425 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
44 addclpr 7650 . . . . . . . . 9  |-  ( ( ( x  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P. )
4542, 43, 44syl2an 289 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) )  e.  P. )
467, 24mpan2 425 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
47 addclpr 7650 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4846, 27, 47syl2an 289 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4945, 48anim12i 338 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e.  P. )
)
50 enreceq 7849 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
)  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. ) )  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5149, 50syldan 282 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5251anidms 397 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5341, 52mpbird 167 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
5411, 53eqtr4d 2241 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. x ,  y >. ]  ~R  )
556, 54eqtrid 2250 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  )
561, 4, 55ecoptocl 6709 1  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   <.cop 3636  (class class class)co 5944   [cec 6618   P.cnp 7404   1Pc1p 7405    +P. cpp 7406    .P. cmp 7407    ~R cer 7409   R.cnr 7410   1Rc1r 7412    .R cmr 7415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-eprel 4336  df-id 4340  df-po 4343  df-iso 4344  df-iord 4413  df-on 4415  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-1o 6502  df-2o 6503  df-oadd 6506  df-omul 6507  df-er 6620  df-ec 6622  df-qs 6626  df-ni 7417  df-pli 7418  df-mi 7419  df-lti 7420  df-plpq 7457  df-mpq 7458  df-enq 7460  df-nqqs 7461  df-plqqs 7462  df-mqqs 7463  df-1nqqs 7464  df-rq 7465  df-ltnqqs 7466  df-enq0 7537  df-nq0 7538  df-0nq0 7539  df-plq0 7540  df-mq0 7541  df-inp 7579  df-i1p 7580  df-iplp 7581  df-imp 7582  df-enr 7839  df-nr 7840  df-mr 7842  df-1r 7845
This theorem is referenced by:  pn0sr  7884  axi2m1  7988  ax1rid  7990  axcnre  7994
  Copyright terms: Public domain W3C validator