ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1idsr Unicode version

Theorem 1idsr 7758
Description: 1 is an identity element for multiplication. (Contributed by Jim Kingdon, 5-Jan-2020.)
Assertion
Ref Expression
1idsr  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )

Proof of Theorem 1idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7717 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5876 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  .R 
1R )  =  ( A  .R  1R )
)
3 id 19 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2192 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  .R  1R )  =  A
) )
5 df-1r 7722 . . . 4  |-  1R  =  [ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R
65oveq2i 5880 . . 3  |-  ( [
<. x ,  y >. ]  ~R  .R  1R )  =  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )
7 1pr 7544 . . . . . 6  |-  1P  e.  P.
8 addclpr 7527 . . . . . 6  |-  ( ( 1P  e.  P.  /\  1P  e.  P. )  -> 
( 1P  +P.  1P )  e.  P. )
97, 7, 8mp2an 426 . . . . 5  |-  ( 1P 
+P.  1P )  e.  P.
10 mulsrpr 7736 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( 1P  +P.  1P )  e.  P.  /\  1P  e.  P. ) )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
119, 7, 10mpanr12 439 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
12 distrprg 7578 . . . . . . . . 9  |-  ( ( x  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
137, 7, 12mp3an23 1329 . . . . . . . 8  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  =  ( ( x  .P.  1P )  +P.  ( x  .P.  1P ) ) )
14 1idpr 7582 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  =  x )
1514oveq1d 5884 . . . . . . . 8  |-  ( x  e.  P.  ->  (
( x  .P.  1P )  +P.  ( x  .P.  1P ) )  =  ( x  +P.  ( x  .P.  1P ) ) )
1613, 15eqtr2d 2211 . . . . . . 7  |-  ( x  e.  P.  ->  (
x  +P.  ( x  .P.  1P ) )  =  ( x  .P.  ( 1P  +P.  1P ) ) )
17 distrprg 7578 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  1P  e.  P.  /\  1P  e.  P. )  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
187, 7, 17mp3an23 1329 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( ( y  .P. 
1P )  +P.  (
y  .P.  1P )
) )
19 1idpr 7582 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  =  y )
2019oveq1d 5884 . . . . . . . 8  |-  ( y  e.  P.  ->  (
( y  .P.  1P )  +P.  ( y  .P. 
1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2118, 20eqtrd 2210 . . . . . . 7  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  =  ( y  +P.  (
y  .P.  1P )
) )
2216, 21oveqan12d 5888 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) ) )
23 simpl 109 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  x  e.  P. )
24 mulclpr 7562 . . . . . . . 8  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  .P.  1P )  e.  P. )
2523, 7, 24sylancl 413 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  1P )  e.  P. )
26 mulclpr 7562 . . . . . . . . 9  |-  ( ( y  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
279, 26mpan2 425 . . . . . . . 8  |-  ( y  e.  P.  ->  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )
2827adantl 277 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  ( 1P  +P.  1P ) )  e.  P. )
29 addassprg 7569 . . . . . . 7  |-  ( ( x  e.  P.  /\  ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  +P.  (
x  .P.  1P )
)  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
3023, 25, 28, 29syl3anc 1238 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  ( x  .P.  1P ) )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  =  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) ) )
31 mulclpr 7562 . . . . . . . 8  |-  ( ( x  e.  P.  /\  ( 1P  +P.  1P )  e.  P. )  -> 
( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
3223, 9, 31sylancl 413 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  .P.  ( 1P  +P.  1P ) )  e.  P. )
33 simpr 110 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  y  e.  P. )
34 mulclpr 7562 . . . . . . . 8  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  .P.  1P )  e.  P. )
3533, 7, 34sylancl 413 . . . . . . 7  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( y  .P.  1P )  e.  P. )
36 addcomprg 7568 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( z  +P.  w
)  =  ( w  +P.  z ) )
3736adantl 277 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  +P.  w )  =  ( w  +P.  z ) )
38 addassprg 7569 . . . . . . . 8  |-  ( ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )  ->  (
( z  +P.  w
)  +P.  v )  =  ( z  +P.  ( w  +P.  v
) ) )
3938adantl 277 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  +P.  w )  +P.  v )  =  ( z  +P.  ( w  +P.  v ) ) )
4032, 33, 35, 37, 39caov12d 6050 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  +P.  ( y  .P. 
1P ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
4122, 30, 403eqtr3d 2218 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) )
429, 31mpan2 425 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  ( 1P  +P.  1P ) )  e. 
P. )
437, 34mpan2 425 . . . . . . . . 9  |-  ( y  e.  P.  ->  (
y  .P.  1P )  e.  P. )
44 addclpr 7527 . . . . . . . . 9  |-  ( ( ( x  .P.  ( 1P  +P.  1P ) )  e.  P.  /\  (
y  .P.  1P )  e.  P. )  ->  (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P. )
4542, 43, 44syl2an 289 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) )  e.  P. )
467, 24mpan2 425 . . . . . . . . 9  |-  ( x  e.  P.  ->  (
x  .P.  1P )  e.  P. )
47 addclpr 7527 . . . . . . . . 9  |-  ( ( ( x  .P.  1P )  e.  P.  /\  (
y  .P.  ( 1P  +P.  1P ) )  e. 
P. )  ->  (
( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4846, 27, 47syl2an 289 . . . . . . . 8  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. )
4945, 48anim12i 338 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( (
( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) )  e. 
P.  /\  ( (
x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e.  P. )
)
50 enreceq 7726 . . . . . . 7  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
)  e.  P.  /\  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) )  e. 
P. ) )  -> 
( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5149, 50syldan 282 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( x  e.  P.  /\  y  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P. 
1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5251anidms 397 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  (
y  .P.  1P )
) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  <->  ( x  +P.  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) )  =  ( y  +P.  ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ) ) )
5341, 52mpbird 167 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( ( x  .P.  ( 1P  +P.  1P ) )  +P.  ( y  .P.  1P ) ) ,  ( ( x  .P.  1P )  +P.  ( y  .P.  ( 1P  +P.  1P ) ) ) >. ]  ~R  )
5411, 53eqtr4d 2213 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
[ <. ( 1P  +P.  1P ) ,  1P >. ]  ~R  )  =  [ <. x ,  y >. ]  ~R  )
556, 54eqtrid 2222 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  .R 
1R )  =  [ <. x ,  y >. ]  ~R  )
561, 4, 55ecoptocl 6616 1  |-  ( A  e.  R.  ->  ( A  .R  1R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   <.cop 3594  (class class class)co 5869   [cec 6527   P.cnp 7281   1Pc1p 7282    +P. cpp 7283    .P. cmp 7284    ~R cer 7286   R.cnr 7287   1Rc1r 7289    .R cmr 7292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-eprel 4286  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-1o 6411  df-2o 6412  df-oadd 6415  df-omul 6416  df-er 6529  df-ec 6531  df-qs 6535  df-ni 7294  df-pli 7295  df-mi 7296  df-lti 7297  df-plpq 7334  df-mpq 7335  df-enq 7337  df-nqqs 7338  df-plqqs 7339  df-mqqs 7340  df-1nqqs 7341  df-rq 7342  df-ltnqqs 7343  df-enq0 7414  df-nq0 7415  df-0nq0 7416  df-plq0 7417  df-mq0 7418  df-inp 7456  df-i1p 7457  df-iplp 7458  df-imp 7459  df-enr 7716  df-nr 7717  df-mr 7719  df-1r 7722
This theorem is referenced by:  pn0sr  7761  axi2m1  7865  ax1rid  7867  axcnre  7871
  Copyright terms: Public domain W3C validator