| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaddnq | Unicode version | ||
| Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| ltaddnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2nq 7476 |
. . . . . . 7
| |
| 2 | 1nq 7436 |
. . . . . . . 8
| |
| 3 | addclnq 7445 |
. . . . . . . . 9
| |
| 4 | 2, 2, 3 | mp2an 426 |
. . . . . . . 8
|
| 5 | ltmnqg 7471 |
. . . . . . . 8
| |
| 6 | 2, 4, 5 | mp3an12 1338 |
. . . . . . 7
|
| 7 | 1, 6 | mpbii 148 |
. . . . . 6
|
| 8 | mulidnq 7459 |
. . . . . 6
| |
| 9 | distrnqg 7457 |
. . . . . . . 8
| |
| 10 | 2, 2, 9 | mp3an23 1340 |
. . . . . . 7
|
| 11 | 8, 8 | oveq12d 5941 |
. . . . . . 7
|
| 12 | 10, 11 | eqtrd 2229 |
. . . . . 6
|
| 13 | 7, 8, 12 | 3brtr3d 4065 |
. . . . 5
|
| 14 | 13 | adantl 277 |
. . . 4
|
| 15 | simpr 110 |
. . . . 5
| |
| 16 | addclnq 7445 |
. . . . . . 7
| |
| 17 | 16 | anidms 397 |
. . . . . 6
|
| 18 | 17 | adantl 277 |
. . . . 5
|
| 19 | simpl 109 |
. . . . 5
| |
| 20 | ltanqg 7470 |
. . . . 5
| |
| 21 | 15, 18, 19, 20 | syl3anc 1249 |
. . . 4
|
| 22 | 14, 21 | mpbid 147 |
. . 3
|
| 23 | addcomnqg 7451 |
. . 3
| |
| 24 | addcomnqg 7451 |
. . . . 5
| |
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | addassnqg 7452 |
. . . . 5
| |
| 27 | 26 | adantl 277 |
. . . 4
|
| 28 | 19, 15, 15, 25, 27 | caov12d 6107 |
. . 3
|
| 29 | 22, 23, 28 | 3brtr3d 4065 |
. 2
|
| 30 | addclnq 7445 |
. . 3
| |
| 31 | ltanqg 7470 |
. . 3
| |
| 32 | 19, 30, 15, 31 | syl3anc 1249 |
. 2
|
| 33 | 29, 32 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5926 df-oprab 5927 df-mpo 5928 df-1st 6200 df-2nd 6201 df-recs 6365 df-irdg 6430 df-1o 6476 df-oadd 6480 df-omul 6481 df-er 6594 df-ec 6596 df-qs 6600 df-ni 7374 df-pli 7375 df-mi 7376 df-lti 7377 df-plpq 7414 df-mpq 7415 df-enq 7417 df-nqqs 7418 df-plqqs 7419 df-mqqs 7420 df-1nqqs 7421 df-ltnqqs 7423 |
| This theorem is referenced by: ltexnqq 7478 nsmallnqq 7482 subhalfnqq 7484 ltbtwnnqq 7485 prarloclemarch2 7489 ltexprlemm 7670 ltexprlemopl 7671 addcanprleml 7684 addcanprlemu 7685 recexprlemm 7694 cauappcvgprlemm 7715 cauappcvgprlemopl 7716 cauappcvgprlem2 7730 caucvgprlemnkj 7736 caucvgprlemnbj 7737 caucvgprlemm 7738 caucvgprlemopl 7739 caucvgprprlemnjltk 7761 caucvgprprlemopl 7767 suplocexprlemmu 7788 |
| Copyright terms: Public domain | W3C validator |