| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaddnq | Unicode version | ||
| Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| ltaddnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2nq 7589 |
. . . . . . 7
| |
| 2 | 1nq 7549 |
. . . . . . . 8
| |
| 3 | addclnq 7558 |
. . . . . . . . 9
| |
| 4 | 2, 2, 3 | mp2an 426 |
. . . . . . . 8
|
| 5 | ltmnqg 7584 |
. . . . . . . 8
| |
| 6 | 2, 4, 5 | mp3an12 1361 |
. . . . . . 7
|
| 7 | 1, 6 | mpbii 148 |
. . . . . 6
|
| 8 | mulidnq 7572 |
. . . . . 6
| |
| 9 | distrnqg 7570 |
. . . . . . . 8
| |
| 10 | 2, 2, 9 | mp3an23 1363 |
. . . . . . 7
|
| 11 | 8, 8 | oveq12d 6018 |
. . . . . . 7
|
| 12 | 10, 11 | eqtrd 2262 |
. . . . . 6
|
| 13 | 7, 8, 12 | 3brtr3d 4113 |
. . . . 5
|
| 14 | 13 | adantl 277 |
. . . 4
|
| 15 | simpr 110 |
. . . . 5
| |
| 16 | addclnq 7558 |
. . . . . . 7
| |
| 17 | 16 | anidms 397 |
. . . . . 6
|
| 18 | 17 | adantl 277 |
. . . . 5
|
| 19 | simpl 109 |
. . . . 5
| |
| 20 | ltanqg 7583 |
. . . . 5
| |
| 21 | 15, 18, 19, 20 | syl3anc 1271 |
. . . 4
|
| 22 | 14, 21 | mpbid 147 |
. . 3
|
| 23 | addcomnqg 7564 |
. . 3
| |
| 24 | addcomnqg 7564 |
. . . . 5
| |
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | addassnqg 7565 |
. . . . 5
| |
| 27 | 26 | adantl 277 |
. . . 4
|
| 28 | 19, 15, 15, 25, 27 | caov12d 6186 |
. . 3
|
| 29 | 22, 23, 28 | 3brtr3d 4113 |
. 2
|
| 30 | addclnq 7558 |
. . 3
| |
| 31 | ltanqg 7583 |
. . 3
| |
| 32 | 19, 30, 15, 31 | syl3anc 1271 |
. 2
|
| 33 | 29, 32 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-iinf 4679 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-eprel 4379 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-iom 4682 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-recs 6449 df-irdg 6514 df-1o 6560 df-oadd 6564 df-omul 6565 df-er 6678 df-ec 6680 df-qs 6684 df-ni 7487 df-pli 7488 df-mi 7489 df-lti 7490 df-plpq 7527 df-mpq 7528 df-enq 7530 df-nqqs 7531 df-plqqs 7532 df-mqqs 7533 df-1nqqs 7534 df-ltnqqs 7536 |
| This theorem is referenced by: ltexnqq 7591 nsmallnqq 7595 subhalfnqq 7597 ltbtwnnqq 7598 prarloclemarch2 7602 ltexprlemm 7783 ltexprlemopl 7784 addcanprleml 7797 addcanprlemu 7798 recexprlemm 7807 cauappcvgprlemm 7828 cauappcvgprlemopl 7829 cauappcvgprlem2 7843 caucvgprlemnkj 7849 caucvgprlemnbj 7850 caucvgprlemm 7851 caucvgprlemopl 7852 caucvgprprlemnjltk 7874 caucvgprprlemopl 7880 suplocexprlemmu 7901 |
| Copyright terms: Public domain | W3C validator |