ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddnq Unicode version

Theorem ltaddnq 7328
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltaddnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )

Proof of Theorem ltaddnq
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2nq 7327 . . . . . . 7  |-  1Q  <Q  ( 1Q  +Q  1Q )
2 1nq 7287 . . . . . . . 8  |-  1Q  e.  Q.
3 addclnq 7296 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  1Q  e.  Q. )  -> 
( 1Q  +Q  1Q )  e.  Q. )
42, 2, 3mp2an 423 . . . . . . . 8  |-  ( 1Q 
+Q  1Q )  e. 
Q.
5 ltmnqg 7322 . . . . . . . 8  |-  ( ( 1Q  e.  Q.  /\  ( 1Q  +Q  1Q )  e.  Q.  /\  B  e.  Q. )  ->  ( 1Q  <Q  ( 1Q  +Q  1Q )  <->  ( B  .Q  1Q )  <Q  ( B  .Q  ( 1Q  +Q  1Q ) ) ) )
62, 4, 5mp3an12 1309 . . . . . . 7  |-  ( B  e.  Q.  ->  ( 1Q  <Q  ( 1Q  +Q  1Q )  <->  ( B  .Q  1Q )  <Q  ( B  .Q  ( 1Q  +Q  1Q ) ) ) )
71, 6mpbii 147 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  <Q 
( B  .Q  ( 1Q  +Q  1Q ) ) )
8 mulidnq 7310 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  =  B )
9 distrnqg 7308 . . . . . . . 8  |-  ( ( B  e.  Q.  /\  1Q  e.  Q.  /\  1Q  e.  Q. )  ->  ( B  .Q  ( 1Q  +Q  1Q ) )  =  ( ( B  .Q  1Q )  +Q  ( B  .Q  1Q ) ) )
102, 2, 9mp3an23 1311 . . . . . . 7  |-  ( B  e.  Q.  ->  ( B  .Q  ( 1Q  +Q  1Q ) )  =  ( ( B  .Q  1Q )  +Q  ( B  .Q  1Q ) ) )
118, 8oveq12d 5843 . . . . . . 7  |-  ( B  e.  Q.  ->  (
( B  .Q  1Q )  +Q  ( B  .Q  1Q ) )  =  ( B  +Q  B ) )
1210, 11eqtrd 2190 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  ( 1Q  +Q  1Q ) )  =  ( B  +Q  B ) )
137, 8, 123brtr3d 3996 . . . . 5  |-  ( B  e.  Q.  ->  B  <Q  ( B  +Q  B
) )
1413adantl 275 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  <Q  ( B  +Q  B ) )
15 simpr 109 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  e.  Q. )
16 addclnq 7296 . . . . . . 7  |-  ( ( B  e.  Q.  /\  B  e.  Q. )  ->  ( B  +Q  B
)  e.  Q. )
1716anidms 395 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  +Q  B )  e. 
Q. )
1817adantl 275 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( B  +Q  B
)  e.  Q. )
19 simpl 108 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  e.  Q. )
20 ltanqg 7321 . . . . 5  |-  ( ( B  e.  Q.  /\  ( B  +Q  B
)  e.  Q.  /\  A  e.  Q. )  ->  ( B  <Q  ( B  +Q  B )  <->  ( A  +Q  B )  <Q  ( A  +Q  ( B  +Q  B ) ) ) )
2115, 18, 19, 20syl3anc 1220 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( B  <Q  ( B  +Q  B )  <->  ( A  +Q  B )  <Q  ( A  +Q  ( B  +Q  B ) ) ) )
2214, 21mpbid 146 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  <Q  ( A  +Q  ( B  +Q  B
) ) )
23 addcomnqg 7302 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( B  +Q  A ) )
24 addcomnqg 7302 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q. )  ->  ( r  +Q  s
)  =  ( s  +Q  r ) )
2524adantl 275 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( r  e.  Q.  /\  s  e.  Q. )
)  ->  ( r  +Q  s )  =  ( s  +Q  r ) )
26 addassnqg 7303 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q.  /\  t  e.  Q. )  ->  (
( r  +Q  s
)  +Q  t )  =  ( r  +Q  ( s  +Q  t
) ) )
2726adantl 275 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( r  e.  Q.  /\  s  e.  Q.  /\  t  e.  Q. )
)  ->  ( (
r  +Q  s )  +Q  t )  =  ( r  +Q  (
s  +Q  t ) ) )
2819, 15, 15, 25, 27caov12d 6003 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  ( B  +Q  B ) )  =  ( B  +Q  ( A  +Q  B
) ) )
2922, 23, 283brtr3d 3996 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( B  +Q  A
)  <Q  ( B  +Q  ( A  +Q  B
) ) )
30 addclnq 7296 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
31 ltanqg 7321 . . 3  |-  ( ( A  e.  Q.  /\  ( A  +Q  B
)  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  ( A  +Q  B )  <->  ( B  +Q  A )  <Q  ( B  +Q  ( A  +Q  B ) ) ) )
3219, 30, 15, 31syl3anc 1220 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  ( A  +Q  B )  <->  ( B  +Q  A )  <Q  ( B  +Q  ( A  +Q  B ) ) ) )
3329, 32mpbird 166 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   class class class wbr 3966  (class class class)co 5825   Q.cnq 7201   1Qc1q 7202    +Q cplq 7203    .Q cmq 7204    <Q cltq 7206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-eprel 4250  df-id 4254  df-iord 4327  df-on 4329  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-irdg 6318  df-1o 6364  df-oadd 6368  df-omul 6369  df-er 6481  df-ec 6483  df-qs 6487  df-ni 7225  df-pli 7226  df-mi 7227  df-lti 7228  df-plpq 7265  df-mpq 7266  df-enq 7268  df-nqqs 7269  df-plqqs 7270  df-mqqs 7271  df-1nqqs 7272  df-ltnqqs 7274
This theorem is referenced by:  ltexnqq  7329  nsmallnqq  7333  subhalfnqq  7335  ltbtwnnqq  7336  prarloclemarch2  7340  ltexprlemm  7521  ltexprlemopl  7522  addcanprleml  7535  addcanprlemu  7536  recexprlemm  7545  cauappcvgprlemm  7566  cauappcvgprlemopl  7567  cauappcvgprlem2  7581  caucvgprlemnkj  7587  caucvgprlemnbj  7588  caucvgprlemm  7589  caucvgprlemopl  7590  caucvgprprlemnjltk  7612  caucvgprprlemopl  7618  suplocexprlemmu  7639
  Copyright terms: Public domain W3C validator