Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltaddnq | Unicode version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
ltaddnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2nq 7327 | . . . . . . 7 | |
2 | 1nq 7287 | . . . . . . . 8 | |
3 | addclnq 7296 | . . . . . . . . 9 | |
4 | 2, 2, 3 | mp2an 423 | . . . . . . . 8 |
5 | ltmnqg 7322 | . . . . . . . 8 | |
6 | 2, 4, 5 | mp3an12 1309 | . . . . . . 7 |
7 | 1, 6 | mpbii 147 | . . . . . 6 |
8 | mulidnq 7310 | . . . . . 6 | |
9 | distrnqg 7308 | . . . . . . . 8 | |
10 | 2, 2, 9 | mp3an23 1311 | . . . . . . 7 |
11 | 8, 8 | oveq12d 5843 | . . . . . . 7 |
12 | 10, 11 | eqtrd 2190 | . . . . . 6 |
13 | 7, 8, 12 | 3brtr3d 3996 | . . . . 5 |
14 | 13 | adantl 275 | . . . 4 |
15 | simpr 109 | . . . . 5 | |
16 | addclnq 7296 | . . . . . . 7 | |
17 | 16 | anidms 395 | . . . . . 6 |
18 | 17 | adantl 275 | . . . . 5 |
19 | simpl 108 | . . . . 5 | |
20 | ltanqg 7321 | . . . . 5 | |
21 | 15, 18, 19, 20 | syl3anc 1220 | . . . 4 |
22 | 14, 21 | mpbid 146 | . . 3 |
23 | addcomnqg 7302 | . . 3 | |
24 | addcomnqg 7302 | . . . . 5 | |
25 | 24 | adantl 275 | . . . 4 |
26 | addassnqg 7303 | . . . . 5 | |
27 | 26 | adantl 275 | . . . 4 |
28 | 19, 15, 15, 25, 27 | caov12d 6003 | . . 3 |
29 | 22, 23, 28 | 3brtr3d 3996 | . 2 |
30 | addclnq 7296 | . . 3 | |
31 | ltanqg 7321 | . . 3 | |
32 | 19, 30, 15, 31 | syl3anc 1220 | . 2 |
33 | 29, 32 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 class class class wbr 3966 (class class class)co 5825 cnq 7201 c1q 7202 cplq 7203 cmq 7204 cltq 7206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4080 ax-sep 4083 ax-nul 4091 ax-pow 4136 ax-pr 4170 ax-un 4394 ax-setind 4497 ax-iinf 4548 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3774 df-int 3809 df-iun 3852 df-br 3967 df-opab 4027 df-mpt 4028 df-tr 4064 df-eprel 4250 df-id 4254 df-iord 4327 df-on 4329 df-suc 4332 df-iom 4551 df-xp 4593 df-rel 4594 df-cnv 4595 df-co 4596 df-dm 4597 df-rn 4598 df-res 4599 df-ima 4600 df-iota 5136 df-fun 5173 df-fn 5174 df-f 5175 df-f1 5176 df-fo 5177 df-f1o 5178 df-fv 5179 df-ov 5828 df-oprab 5829 df-mpo 5830 df-1st 6089 df-2nd 6090 df-recs 6253 df-irdg 6318 df-1o 6364 df-oadd 6368 df-omul 6369 df-er 6481 df-ec 6483 df-qs 6487 df-ni 7225 df-pli 7226 df-mi 7227 df-lti 7228 df-plpq 7265 df-mpq 7266 df-enq 7268 df-nqqs 7269 df-plqqs 7270 df-mqqs 7271 df-1nqqs 7272 df-ltnqqs 7274 |
This theorem is referenced by: ltexnqq 7329 nsmallnqq 7333 subhalfnqq 7335 ltbtwnnqq 7336 prarloclemarch2 7340 ltexprlemm 7521 ltexprlemopl 7522 addcanprleml 7535 addcanprlemu 7536 recexprlemm 7545 cauappcvgprlemm 7566 cauappcvgprlemopl 7567 cauappcvgprlem2 7581 caucvgprlemnkj 7587 caucvgprlemnbj 7588 caucvgprlemm 7589 caucvgprlemopl 7590 caucvgprprlemnjltk 7612 caucvgprprlemopl 7618 suplocexprlemmu 7639 |
Copyright terms: Public domain | W3C validator |