ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ltaddnq Unicode version

Theorem ltaddnq 7519
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.)
Assertion
Ref Expression
ltaddnq  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )

Proof of Theorem ltaddnq
Dummy variables  r  s  t are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1lt2nq 7518 . . . . . . 7  |-  1Q  <Q  ( 1Q  +Q  1Q )
2 1nq 7478 . . . . . . . 8  |-  1Q  e.  Q.
3 addclnq 7487 . . . . . . . . 9  |-  ( ( 1Q  e.  Q.  /\  1Q  e.  Q. )  -> 
( 1Q  +Q  1Q )  e.  Q. )
42, 2, 3mp2an 426 . . . . . . . 8  |-  ( 1Q 
+Q  1Q )  e. 
Q.
5 ltmnqg 7513 . . . . . . . 8  |-  ( ( 1Q  e.  Q.  /\  ( 1Q  +Q  1Q )  e.  Q.  /\  B  e.  Q. )  ->  ( 1Q  <Q  ( 1Q  +Q  1Q )  <->  ( B  .Q  1Q )  <Q  ( B  .Q  ( 1Q  +Q  1Q ) ) ) )
62, 4, 5mp3an12 1339 . . . . . . 7  |-  ( B  e.  Q.  ->  ( 1Q  <Q  ( 1Q  +Q  1Q )  <->  ( B  .Q  1Q )  <Q  ( B  .Q  ( 1Q  +Q  1Q ) ) ) )
71, 6mpbii 148 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  <Q 
( B  .Q  ( 1Q  +Q  1Q ) ) )
8 mulidnq 7501 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  1Q )  =  B )
9 distrnqg 7499 . . . . . . . 8  |-  ( ( B  e.  Q.  /\  1Q  e.  Q.  /\  1Q  e.  Q. )  ->  ( B  .Q  ( 1Q  +Q  1Q ) )  =  ( ( B  .Q  1Q )  +Q  ( B  .Q  1Q ) ) )
102, 2, 9mp3an23 1341 . . . . . . 7  |-  ( B  e.  Q.  ->  ( B  .Q  ( 1Q  +Q  1Q ) )  =  ( ( B  .Q  1Q )  +Q  ( B  .Q  1Q ) ) )
118, 8oveq12d 5961 . . . . . . 7  |-  ( B  e.  Q.  ->  (
( B  .Q  1Q )  +Q  ( B  .Q  1Q ) )  =  ( B  +Q  B ) )
1210, 11eqtrd 2237 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  .Q  ( 1Q  +Q  1Q ) )  =  ( B  +Q  B ) )
137, 8, 123brtr3d 4074 . . . . 5  |-  ( B  e.  Q.  ->  B  <Q  ( B  +Q  B
) )
1413adantl 277 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  <Q  ( B  +Q  B ) )
15 simpr 110 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  B  e.  Q. )
16 addclnq 7487 . . . . . . 7  |-  ( ( B  e.  Q.  /\  B  e.  Q. )  ->  ( B  +Q  B
)  e.  Q. )
1716anidms 397 . . . . . 6  |-  ( B  e.  Q.  ->  ( B  +Q  B )  e. 
Q. )
1817adantl 277 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( B  +Q  B
)  e.  Q. )
19 simpl 109 . . . . 5  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  e.  Q. )
20 ltanqg 7512 . . . . 5  |-  ( ( B  e.  Q.  /\  ( B  +Q  B
)  e.  Q.  /\  A  e.  Q. )  ->  ( B  <Q  ( B  +Q  B )  <->  ( A  +Q  B )  <Q  ( A  +Q  ( B  +Q  B ) ) ) )
2115, 18, 19, 20syl3anc 1249 . . . 4  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( B  <Q  ( B  +Q  B )  <->  ( A  +Q  B )  <Q  ( A  +Q  ( B  +Q  B ) ) ) )
2214, 21mpbid 147 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  <Q  ( A  +Q  ( B  +Q  B
) ) )
23 addcomnqg 7493 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  =  ( B  +Q  A ) )
24 addcomnqg 7493 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q. )  ->  ( r  +Q  s
)  =  ( s  +Q  r ) )
2524adantl 277 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( r  e.  Q.  /\  s  e.  Q. )
)  ->  ( r  +Q  s )  =  ( s  +Q  r ) )
26 addassnqg 7494 . . . . 5  |-  ( ( r  e.  Q.  /\  s  e.  Q.  /\  t  e.  Q. )  ->  (
( r  +Q  s
)  +Q  t )  =  ( r  +Q  ( s  +Q  t
) ) )
2726adantl 277 . . . 4  |-  ( ( ( A  e.  Q.  /\  B  e.  Q. )  /\  ( r  e.  Q.  /\  s  e.  Q.  /\  t  e.  Q. )
)  ->  ( (
r  +Q  s )  +Q  t )  =  ( r  +Q  (
s  +Q  t ) ) )
2819, 15, 15, 25, 27caov12d 6127 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  ( B  +Q  B ) )  =  ( B  +Q  ( A  +Q  B
) ) )
2922, 23, 283brtr3d 4074 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( B  +Q  A
)  <Q  ( B  +Q  ( A  +Q  B
) ) )
30 addclnq 7487 . . 3  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  +Q  B
)  e.  Q. )
31 ltanqg 7512 . . 3  |-  ( ( A  e.  Q.  /\  ( A  +Q  B
)  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  ( A  +Q  B )  <->  ( B  +Q  A )  <Q  ( B  +Q  ( A  +Q  B ) ) ) )
3219, 30, 15, 31syl3anc 1249 . 2  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  ( A  <Q  ( A  +Q  B )  <->  ( B  +Q  A )  <Q  ( B  +Q  ( A  +Q  B ) ) ) )
3329, 32mpbird 167 1  |-  ( ( A  e.  Q.  /\  B  e.  Q. )  ->  A  <Q  ( A  +Q  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1372    e. wcel 2175   class class class wbr 4043  (class class class)co 5943   Q.cnq 7392   1Qc1q 7393    +Q cplq 7394    .Q cmq 7395    <Q cltq 7397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-eprel 4335  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-irdg 6455  df-1o 6501  df-oadd 6505  df-omul 6506  df-er 6619  df-ec 6621  df-qs 6625  df-ni 7416  df-pli 7417  df-mi 7418  df-lti 7419  df-plpq 7456  df-mpq 7457  df-enq 7459  df-nqqs 7460  df-plqqs 7461  df-mqqs 7462  df-1nqqs 7463  df-ltnqqs 7465
This theorem is referenced by:  ltexnqq  7520  nsmallnqq  7524  subhalfnqq  7526  ltbtwnnqq  7527  prarloclemarch2  7531  ltexprlemm  7712  ltexprlemopl  7713  addcanprleml  7726  addcanprlemu  7727  recexprlemm  7736  cauappcvgprlemm  7757  cauappcvgprlemopl  7758  cauappcvgprlem2  7772  caucvgprlemnkj  7778  caucvgprlemnbj  7779  caucvgprlemm  7780  caucvgprlemopl  7781  caucvgprprlemnjltk  7803  caucvgprprlemopl  7809  suplocexprlemmu  7830
  Copyright terms: Public domain W3C validator