Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ltaddnq | Unicode version |
Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
Ref | Expression |
---|---|
ltaddnq |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1lt2nq 7347 | . . . . . . 7 | |
2 | 1nq 7307 | . . . . . . . 8 | |
3 | addclnq 7316 | . . . . . . . . 9 | |
4 | 2, 2, 3 | mp2an 423 | . . . . . . . 8 |
5 | ltmnqg 7342 | . . . . . . . 8 | |
6 | 2, 4, 5 | mp3an12 1317 | . . . . . . 7 |
7 | 1, 6 | mpbii 147 | . . . . . 6 |
8 | mulidnq 7330 | . . . . . 6 | |
9 | distrnqg 7328 | . . . . . . . 8 | |
10 | 2, 2, 9 | mp3an23 1319 | . . . . . . 7 |
11 | 8, 8 | oveq12d 5860 | . . . . . . 7 |
12 | 10, 11 | eqtrd 2198 | . . . . . 6 |
13 | 7, 8, 12 | 3brtr3d 4013 | . . . . 5 |
14 | 13 | adantl 275 | . . . 4 |
15 | simpr 109 | . . . . 5 | |
16 | addclnq 7316 | . . . . . . 7 | |
17 | 16 | anidms 395 | . . . . . 6 |
18 | 17 | adantl 275 | . . . . 5 |
19 | simpl 108 | . . . . 5 | |
20 | ltanqg 7341 | . . . . 5 | |
21 | 15, 18, 19, 20 | syl3anc 1228 | . . . 4 |
22 | 14, 21 | mpbid 146 | . . 3 |
23 | addcomnqg 7322 | . . 3 | |
24 | addcomnqg 7322 | . . . . 5 | |
25 | 24 | adantl 275 | . . . 4 |
26 | addassnqg 7323 | . . . . 5 | |
27 | 26 | adantl 275 | . . . 4 |
28 | 19, 15, 15, 25, 27 | caov12d 6023 | . . 3 |
29 | 22, 23, 28 | 3brtr3d 4013 | . 2 |
30 | addclnq 7316 | . . 3 | |
31 | ltanqg 7341 | . . 3 | |
32 | 19, 30, 15, 31 | syl3anc 1228 | . 2 |
33 | 29, 32 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wcel 2136 class class class wbr 3982 (class class class)co 5842 cnq 7221 c1q 7222 cplq 7223 cmq 7224 cltq 7226 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-eprel 4267 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-1o 6384 df-oadd 6388 df-omul 6389 df-er 6501 df-ec 6503 df-qs 6507 df-ni 7245 df-pli 7246 df-mi 7247 df-lti 7248 df-plpq 7285 df-mpq 7286 df-enq 7288 df-nqqs 7289 df-plqqs 7290 df-mqqs 7291 df-1nqqs 7292 df-ltnqqs 7294 |
This theorem is referenced by: ltexnqq 7349 nsmallnqq 7353 subhalfnqq 7355 ltbtwnnqq 7356 prarloclemarch2 7360 ltexprlemm 7541 ltexprlemopl 7542 addcanprleml 7555 addcanprlemu 7556 recexprlemm 7565 cauappcvgprlemm 7586 cauappcvgprlemopl 7587 cauappcvgprlem2 7601 caucvgprlemnkj 7607 caucvgprlemnbj 7608 caucvgprlemm 7609 caucvgprlemopl 7610 caucvgprprlemnjltk 7632 caucvgprprlemopl 7638 suplocexprlemmu 7659 |
Copyright terms: Public domain | W3C validator |