| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ltaddnq | Unicode version | ||
| Description: The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) |
| Ref | Expression |
|---|---|
| ltaddnq |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1lt2nq 7518 |
. . . . . . 7
| |
| 2 | 1nq 7478 |
. . . . . . . 8
| |
| 3 | addclnq 7487 |
. . . . . . . . 9
| |
| 4 | 2, 2, 3 | mp2an 426 |
. . . . . . . 8
|
| 5 | ltmnqg 7513 |
. . . . . . . 8
| |
| 6 | 2, 4, 5 | mp3an12 1339 |
. . . . . . 7
|
| 7 | 1, 6 | mpbii 148 |
. . . . . 6
|
| 8 | mulidnq 7501 |
. . . . . 6
| |
| 9 | distrnqg 7499 |
. . . . . . . 8
| |
| 10 | 2, 2, 9 | mp3an23 1341 |
. . . . . . 7
|
| 11 | 8, 8 | oveq12d 5961 |
. . . . . . 7
|
| 12 | 10, 11 | eqtrd 2237 |
. . . . . 6
|
| 13 | 7, 8, 12 | 3brtr3d 4074 |
. . . . 5
|
| 14 | 13 | adantl 277 |
. . . 4
|
| 15 | simpr 110 |
. . . . 5
| |
| 16 | addclnq 7487 |
. . . . . . 7
| |
| 17 | 16 | anidms 397 |
. . . . . 6
|
| 18 | 17 | adantl 277 |
. . . . 5
|
| 19 | simpl 109 |
. . . . 5
| |
| 20 | ltanqg 7512 |
. . . . 5
| |
| 21 | 15, 18, 19, 20 | syl3anc 1249 |
. . . 4
|
| 22 | 14, 21 | mpbid 147 |
. . 3
|
| 23 | addcomnqg 7493 |
. . 3
| |
| 24 | addcomnqg 7493 |
. . . . 5
| |
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | addassnqg 7494 |
. . . . 5
| |
| 27 | 26 | adantl 277 |
. . . 4
|
| 28 | 19, 15, 15, 25, 27 | caov12d 6127 |
. . 3
|
| 29 | 22, 23, 28 | 3brtr3d 4074 |
. 2
|
| 30 | addclnq 7487 |
. . 3
| |
| 31 | ltanqg 7512 |
. . 3
| |
| 32 | 19, 30, 15, 31 | syl3anc 1249 |
. 2
|
| 33 | 29, 32 | mpbird 167 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-pli 7417 df-mi 7418 df-lti 7419 df-plpq 7456 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-plqqs 7461 df-mqqs 7462 df-1nqqs 7463 df-ltnqqs 7465 |
| This theorem is referenced by: ltexnqq 7520 nsmallnqq 7524 subhalfnqq 7526 ltbtwnnqq 7527 prarloclemarch2 7531 ltexprlemm 7712 ltexprlemopl 7713 addcanprleml 7726 addcanprlemu 7727 recexprlemm 7736 cauappcvgprlemm 7757 cauappcvgprlemopl 7758 cauappcvgprlem2 7772 caucvgprlemnkj 7778 caucvgprlemnbj 7779 caucvgprlemm 7780 caucvgprlemopl 7781 caucvgprprlemnjltk 7803 caucvgprprlemopl 7809 suplocexprlemmu 7830 |
| Copyright terms: Public domain | W3C validator |