ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0idsr Unicode version

Theorem 0idsr 7795
Description: The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.)
Assertion
Ref Expression
0idsr  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )

Proof of Theorem 0idsr
Dummy variables  x  y  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-nr 7755 . 2  |-  R.  =  ( ( P.  X.  P. ) /.  ~R  )
2 oveq1 5902 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( [ <. x ,  y >. ]  ~R  +R  0R )  =  ( A  +R  0R ) )
3 id 19 . . 3  |-  ( [
<. x ,  y >. ]  ~R  =  A  ->  [ <. x ,  y
>. ]  ~R  =  A )
42, 3eqeq12d 2204 . 2  |-  ( [
<. x ,  y >. ]  ~R  =  A  -> 
( ( [ <. x ,  y >. ]  ~R  +R  0R )  =  [ <. x ,  y >. ]  ~R  <->  ( A  +R  0R )  =  A
) )
5 df-0r 7759 . . . 4  |-  0R  =  [ <. 1P ,  1P >. ]  ~R
65oveq2i 5906 . . 3  |-  ( [
<. x ,  y >. ]  ~R  +R  0R )  =  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )
7 1pr 7582 . . . . 5  |-  1P  e.  P.
8 addsrpr 7773 . . . . 5  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( 1P  e.  P.  /\  1P  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. (
x  +P.  1P ) ,  ( y  +P. 
1P ) >. ]  ~R  )
97, 7, 8mpanr12 439 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
10 simpl 109 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  x  e.  P. )
11 simpr 110 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  y  e.  P. )
127a1i 9 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  1P  e.  P. )
13 addcomprg 7606 . . . . . . 7  |-  ( ( z  e.  P.  /\  w  e.  P. )  ->  ( z  +P.  w
)  =  ( w  +P.  z ) )
1413adantl 277 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P. )
)  ->  ( z  +P.  w )  =  ( w  +P.  z ) )
15 addassprg 7607 . . . . . . 7  |-  ( ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )  ->  (
( z  +P.  w
)  +P.  v )  =  ( z  +P.  ( w  +P.  v
) ) )
1615adantl 277 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( z  e.  P.  /\  w  e.  P.  /\  v  e.  P. )
)  ->  ( (
z  +P.  w )  +P.  v )  =  ( z  +P.  ( w  +P.  v ) ) )
1710, 11, 12, 14, 16caov12d 6077 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( x  +P.  (
y  +P.  1P )
)  =  ( y  +P.  ( x  +P.  1P ) ) )
18 addclpr 7565 . . . . . . . 8  |-  ( ( x  e.  P.  /\  1P  e.  P. )  -> 
( x  +P.  1P )  e.  P. )
197, 18mpan2 425 . . . . . . 7  |-  ( x  e.  P.  ->  (
x  +P.  1P )  e.  P. )
20 addclpr 7565 . . . . . . . 8  |-  ( ( y  e.  P.  /\  1P  e.  P. )  -> 
( y  +P.  1P )  e.  P. )
217, 20mpan2 425 . . . . . . 7  |-  ( y  e.  P.  ->  (
y  +P.  1P )  e.  P. )
2219, 21anim12i 338 . . . . . 6  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)
23 enreceq 7764 . . . . . 6  |-  ( ( ( x  e.  P.  /\  y  e.  P. )  /\  ( ( x  +P.  1P )  e.  P.  /\  ( y  +P.  1P )  e.  P. )
)  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P. 
1P ) >. ]  ~R  <->  ( x  +P.  ( y  +P.  1P ) )  =  ( y  +P.  ( x  +P.  1P ) ) ) )
2422, 23mpdan 421 . . . . 5  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  <->  ( x  +P.  ( y  +P.  1P ) )  =  ( y  +P.  ( x  +P.  1P ) ) ) )
2517, 24mpbird 167 . . . 4  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  [ <. x ,  y
>. ]  ~R  =  [ <. ( x  +P.  1P ) ,  ( y  +P.  1P ) >. ]  ~R  )
269, 25eqtr4d 2225 . . 3  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  [ <. 1P ,  1P >. ]  ~R  )  =  [ <. x ,  y
>. ]  ~R  )
276, 26eqtrid 2234 . 2  |-  ( ( x  e.  P.  /\  y  e.  P. )  ->  ( [ <. x ,  y >. ]  ~R  +R  0R )  =  [ <. x ,  y >. ]  ~R  )
281, 4, 27ecoptocl 6647 1  |-  ( A  e.  R.  ->  ( A  +R  0R )  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2160   <.cop 3610  (class class class)co 5895   [cec 6556   P.cnp 7319   1Pc1p 7320    +P. cpp 7321    ~R cer 7324   R.cnr 7325   0Rc0r 7326    +R cplr 7329
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4133  ax-sep 4136  ax-nul 4144  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-iinf 4605
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-iun 3903  df-br 4019  df-opab 4080  df-mpt 4081  df-tr 4117  df-eprel 4307  df-id 4311  df-po 4314  df-iso 4315  df-iord 4384  df-on 4386  df-suc 4389  df-iom 4608  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-f1 5240  df-fo 5241  df-f1o 5242  df-fv 5243  df-ov 5898  df-oprab 5899  df-mpo 5900  df-1st 6164  df-2nd 6165  df-recs 6329  df-irdg 6394  df-1o 6440  df-2o 6441  df-oadd 6444  df-omul 6445  df-er 6558  df-ec 6560  df-qs 6564  df-ni 7332  df-pli 7333  df-mi 7334  df-lti 7335  df-plpq 7372  df-mpq 7373  df-enq 7375  df-nqqs 7376  df-plqqs 7377  df-mqqs 7378  df-1nqqs 7379  df-rq 7380  df-ltnqqs 7381  df-enq0 7452  df-nq0 7453  df-0nq0 7454  df-plq0 7455  df-mq0 7456  df-inp 7494  df-i1p 7495  df-iplp 7496  df-enr 7754  df-nr 7755  df-plr 7756  df-0r 7759
This theorem is referenced by:  addgt0sr  7803  ltadd1sr  7804  ltm1sr  7805  caucvgsrlemoffval  7824  caucvgsrlemoffres  7828  caucvgsr  7830  map2psrprg  7833  suplocsrlempr  7835  addresr  7865  mulresr  7866  axi2m1  7903  ax0id  7906  axcnre  7909
  Copyright terms: Public domain W3C validator