| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullocprlem | Unicode version | ||
| Description: Calculations for mullocpr 7638. (Contributed by Jim Kingdon, 10-Dec-2019.) |
| Ref | Expression |
|---|---|
| mullocprlem.ab |
|
| mullocprlem.uqedu |
|
| mullocprlem.edutdu |
|
| mullocprlem.tdudr |
|
| mullocprlem.qr |
|
| mullocprlem.duq |
|
| mullocprlem.du |
|
| mullocprlem.et |
|
| Ref | Expression |
|---|---|
| mullocprlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullocprlem.uqedu |
. . . . . . 7
| |
| 2 | mullocprlem.et |
. . . . . . . . 9
| |
| 3 | 2 | simpld 112 |
. . . . . . . 8
|
| 4 | mullocprlem.duq |
. . . . . . . . 9
| |
| 5 | 4 | simpld 112 |
. . . . . . . 8
|
| 6 | 4 | simprd 114 |
. . . . . . . 8
|
| 7 | mulcomnqg 7450 |
. . . . . . . . 9
| |
| 8 | 7 | adantl 277 |
. . . . . . . 8
|
| 9 | mulassnqg 7451 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 277 |
. . . . . . . 8
|
| 11 | 3, 5, 6, 8, 10 | caov13d 6107 |
. . . . . . 7
|
| 12 | 1, 11 | breqtrd 4059 |
. . . . . 6
|
| 13 | mullocprlem.qr |
. . . . . . . 8
| |
| 14 | 13 | simpld 112 |
. . . . . . 7
|
| 15 | mulclnq 7443 |
. . . . . . . 8
| |
| 16 | 5, 3, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | ltmnqg 7468 |
. . . . . . 7
| |
| 18 | 14, 16, 6, 17 | syl3anc 1249 |
. . . . . 6
|
| 19 | 12, 18 | mpbird 167 |
. . . . 5
|
| 20 | 19 | adantr 276 |
. . . 4
|
| 21 | mullocprlem.ab |
. . . . . . . 8
| |
| 22 | 21 | simpld 112 |
. . . . . . 7
|
| 23 | mullocprlem.du |
. . . . . . . 8
| |
| 24 | 23 | simpld 112 |
. . . . . . 7
|
| 25 | 22, 24 | jca 306 |
. . . . . 6
|
| 26 | 25 | adantr 276 |
. . . . 5
|
| 27 | 21 | simprd 114 |
. . . . . 6
|
| 28 | 27 | anim1i 340 |
. . . . 5
|
| 29 | 14 | adantr 276 |
. . . . 5
|
| 30 | mulnqprl 7635 |
. . . . 5
| |
| 31 | 26, 28, 29, 30 | syl21anc 1248 |
. . . 4
|
| 32 | 20, 31 | mpd 13 |
. . 3
|
| 33 | 32 | orcd 734 |
. 2
|
| 34 | 2 | simprd 114 |
. . . . . . 7
|
| 35 | mulcomnqg 7450 |
. . . . . . 7
| |
| 36 | 34, 6, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | mullocprlem.tdudr |
. . . . . . 7
| |
| 38 | mulclnq 7443 |
. . . . . . . . . 10
| |
| 39 | 34, 6, 38 | syl2anc 411 |
. . . . . . . . 9
|
| 40 | 13 | simprd 114 |
. . . . . . . . 9
|
| 41 | ltmnqg 7468 |
. . . . . . . . 9
| |
| 42 | 39, 40, 5, 41 | syl3anc 1249 |
. . . . . . . 8
|
| 43 | 34, 5, 6, 8, 10 | caov12d 6105 |
. . . . . . . . 9
|
| 44 | 43 | breq1d 4043 |
. . . . . . . 8
|
| 45 | 42, 44 | bitr4d 191 |
. . . . . . 7
|
| 46 | 37, 45 | mpbird 167 |
. . . . . 6
|
| 47 | 36, 46 | eqbrtrrd 4057 |
. . . . 5
|
| 48 | 47 | adantr 276 |
. . . 4
|
| 49 | 23 | simprd 114 |
. . . . . . 7
|
| 50 | 22, 49 | jca 306 |
. . . . . 6
|
| 51 | 50 | adantr 276 |
. . . . 5
|
| 52 | 27 | anim1i 340 |
. . . . 5
|
| 53 | 40 | adantr 276 |
. . . . 5
|
| 54 | mulnqpru 7636 |
. . . . 5
| |
| 55 | 51, 52, 53, 54 | syl21anc 1248 |
. . . 4
|
| 56 | 48, 55 | mpd 13 |
. . 3
|
| 57 | 56 | olcd 735 |
. 2
|
| 58 | mullocprlem.edutdu |
. . . 4
| |
| 59 | mulclnq 7443 |
. . . . . . 7
| |
| 60 | 4, 59 | syl 14 |
. . . . . 6
|
| 61 | ltmnqg 7468 |
. . . . . 6
| |
| 62 | 3, 34, 60, 61 | syl3anc 1249 |
. . . . 5
|
| 63 | mulcomnqg 7450 |
. . . . . . 7
| |
| 64 | 60, 3, 63 | syl2anc 411 |
. . . . . 6
|
| 65 | mulcomnqg 7450 |
. . . . . . 7
| |
| 66 | 60, 34, 65 | syl2anc 411 |
. . . . . 6
|
| 67 | 64, 66 | breq12d 4046 |
. . . . 5
|
| 68 | 62, 67 | bitrd 188 |
. . . 4
|
| 69 | 58, 68 | mpbird 167 |
. . 3
|
| 70 | prop 7542 |
. . . 4
| |
| 71 | prloc 7558 |
. . . 4
| |
| 72 | 70, 71 | sylan 283 |
. . 3
|
| 73 | 27, 69, 72 | syl2anc 411 |
. 2
|
| 74 | 33, 57, 73 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-nul 4159 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-tr 4132 df-eprel 4324 df-id 4328 df-iord 4401 df-on 4403 df-suc 4406 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-recs 6363 df-irdg 6428 df-1o 6474 df-oadd 6478 df-omul 6479 df-er 6592 df-ec 6594 df-qs 6598 df-ni 7371 df-mi 7373 df-lti 7374 df-mpq 7412 df-enq 7414 df-nqqs 7415 df-mqqs 7417 df-1nqqs 7418 df-rq 7419 df-ltnqqs 7420 df-inp 7533 df-imp 7536 |
| This theorem is referenced by: mullocpr 7638 |
| Copyright terms: Public domain | W3C validator |