ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mullocprlem Unicode version

Theorem mullocprlem 7637
Description: Calculations for mullocpr 7638. (Contributed by Jim Kingdon, 10-Dec-2019.)
Hypotheses
Ref Expression
mullocprlem.ab  |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. )
)
mullocprlem.uqedu  |-  ( ph  ->  ( U  .Q  Q
)  <Q  ( E  .Q  ( D  .Q  U
) ) )
mullocprlem.edutdu  |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) ) 
<Q  ( T  .Q  ( D  .Q  U ) ) )
mullocprlem.tdudr  |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) ) 
<Q  ( D  .Q  R
) )
mullocprlem.qr  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
mullocprlem.duq  |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
)
mullocprlem.du  |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )
mullocprlem.et  |-  ( ph  ->  ( E  e.  Q.  /\  T  e.  Q. )
)
Assertion
Ref Expression
mullocprlem  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )

Proof of Theorem mullocprlem
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mullocprlem.uqedu . . . . . . 7  |-  ( ph  ->  ( U  .Q  Q
)  <Q  ( E  .Q  ( D  .Q  U
) ) )
2 mullocprlem.et . . . . . . . . 9  |-  ( ph  ->  ( E  e.  Q.  /\  T  e.  Q. )
)
32simpld 112 . . . . . . . 8  |-  ( ph  ->  E  e.  Q. )
4 mullocprlem.duq . . . . . . . . 9  |-  ( ph  ->  ( D  e.  Q.  /\  U  e.  Q. )
)
54simpld 112 . . . . . . . 8  |-  ( ph  ->  D  e.  Q. )
64simprd 114 . . . . . . . 8  |-  ( ph  ->  U  e.  Q. )
7 mulcomnqg 7450 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  y  e.  Q. )  ->  ( x  .Q  y
)  =  ( y  .Q  x ) )
87adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q. ) )  -> 
( x  .Q  y
)  =  ( y  .Q  x ) )
9 mulassnqg 7451 . . . . . . . . 9  |-  ( ( x  e.  Q.  /\  y  e.  Q.  /\  z  e.  Q. )  ->  (
( x  .Q  y
)  .Q  z )  =  ( x  .Q  ( y  .Q  z
) ) )
109adantl 277 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  Q.  /\  y  e. 
Q.  /\  z  e.  Q. ) )  ->  (
( x  .Q  y
)  .Q  z )  =  ( x  .Q  ( y  .Q  z
) ) )
113, 5, 6, 8, 10caov13d 6107 . . . . . . 7  |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) )  =  ( U  .Q  ( D  .Q  E
) ) )
121, 11breqtrd 4059 . . . . . 6  |-  ( ph  ->  ( U  .Q  Q
)  <Q  ( U  .Q  ( D  .Q  E
) ) )
13 mullocprlem.qr . . . . . . . 8  |-  ( ph  ->  ( Q  e.  Q.  /\  R  e.  Q. )
)
1413simpld 112 . . . . . . 7  |-  ( ph  ->  Q  e.  Q. )
15 mulclnq 7443 . . . . . . . 8  |-  ( ( D  e.  Q.  /\  E  e.  Q. )  ->  ( D  .Q  E
)  e.  Q. )
165, 3, 15syl2anc 411 . . . . . . 7  |-  ( ph  ->  ( D  .Q  E
)  e.  Q. )
17 ltmnqg 7468 . . . . . . 7  |-  ( ( Q  e.  Q.  /\  ( D  .Q  E
)  e.  Q.  /\  U  e.  Q. )  ->  ( Q  <Q  ( D  .Q  E )  <->  ( U  .Q  Q )  <Q  ( U  .Q  ( D  .Q  E ) ) ) )
1814, 16, 6, 17syl3anc 1249 . . . . . 6  |-  ( ph  ->  ( Q  <Q  ( D  .Q  E )  <->  ( U  .Q  Q )  <Q  ( U  .Q  ( D  .Q  E ) ) ) )
1912, 18mpbird 167 . . . . 5  |-  ( ph  ->  Q  <Q  ( D  .Q  E ) )
2019adantr 276 . . . 4  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  Q  <Q  ( D  .Q  E ) )
21 mullocprlem.ab . . . . . . . 8  |-  ( ph  ->  ( A  e.  P.  /\  B  e.  P. )
)
2221simpld 112 . . . . . . 7  |-  ( ph  ->  A  e.  P. )
23 mullocprlem.du . . . . . . . 8  |-  ( ph  ->  ( D  e.  ( 1st `  A )  /\  U  e.  ( 2nd `  A ) ) )
2423simpld 112 . . . . . . 7  |-  ( ph  ->  D  e.  ( 1st `  A ) )
2522, 24jca 306 . . . . . 6  |-  ( ph  ->  ( A  e.  P.  /\  D  e.  ( 1st `  A ) ) )
2625adantr 276 . . . . 5  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( A  e.  P.  /\  D  e.  ( 1st `  A
) ) )
2721simprd 114 . . . . . 6  |-  ( ph  ->  B  e.  P. )
2827anim1i 340 . . . . 5  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( B  e.  P.  /\  E  e.  ( 1st `  B
) ) )
2914adantr 276 . . . . 5  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  Q  e.  Q. )
30 mulnqprl 7635 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  D  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  E  e.  ( 1st `  B
) ) )  /\  Q  e.  Q. )  ->  ( Q  <Q  ( D  .Q  E )  ->  Q  e.  ( 1st `  ( A  .P.  B
) ) ) )
3126, 28, 29, 30syl21anc 1248 . . . 4  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( Q  <Q  ( D  .Q  E
)  ->  Q  e.  ( 1st `  ( A  .P.  B ) ) ) )
3220, 31mpd 13 . . 3  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  Q  e.  ( 1st `  ( A  .P.  B ) ) )
3332orcd 734 . 2  |-  ( (
ph  /\  E  e.  ( 1st `  B ) )  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
342simprd 114 . . . . . . 7  |-  ( ph  ->  T  e.  Q. )
35 mulcomnqg 7450 . . . . . . 7  |-  ( ( T  e.  Q.  /\  U  e.  Q. )  ->  ( T  .Q  U
)  =  ( U  .Q  T ) )
3634, 6, 35syl2anc 411 . . . . . 6  |-  ( ph  ->  ( T  .Q  U
)  =  ( U  .Q  T ) )
37 mullocprlem.tdudr . . . . . . 7  |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) ) 
<Q  ( D  .Q  R
) )
38 mulclnq 7443 . . . . . . . . . 10  |-  ( ( T  e.  Q.  /\  U  e.  Q. )  ->  ( T  .Q  U
)  e.  Q. )
3934, 6, 38syl2anc 411 . . . . . . . . 9  |-  ( ph  ->  ( T  .Q  U
)  e.  Q. )
4013simprd 114 . . . . . . . . 9  |-  ( ph  ->  R  e.  Q. )
41 ltmnqg 7468 . . . . . . . . 9  |-  ( ( ( T  .Q  U
)  e.  Q.  /\  R  e.  Q.  /\  D  e.  Q. )  ->  (
( T  .Q  U
)  <Q  R  <->  ( D  .Q  ( T  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4239, 40, 5, 41syl3anc 1249 . . . . . . . 8  |-  ( ph  ->  ( ( T  .Q  U )  <Q  R  <->  ( D  .Q  ( T  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4334, 5, 6, 8, 10caov12d 6105 . . . . . . . . 9  |-  ( ph  ->  ( T  .Q  ( D  .Q  U ) )  =  ( D  .Q  ( T  .Q  U
) ) )
4443breq1d 4043 . . . . . . . 8  |-  ( ph  ->  ( ( T  .Q  ( D  .Q  U
) )  <Q  ( D  .Q  R )  <->  ( D  .Q  ( T  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4542, 44bitr4d 191 . . . . . . 7  |-  ( ph  ->  ( ( T  .Q  U )  <Q  R  <->  ( T  .Q  ( D  .Q  U
) )  <Q  ( D  .Q  R ) ) )
4637, 45mpbird 167 . . . . . 6  |-  ( ph  ->  ( T  .Q  U
)  <Q  R )
4736, 46eqbrtrrd 4057 . . . . 5  |-  ( ph  ->  ( U  .Q  T
)  <Q  R )
4847adantr 276 . . . 4  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( U  .Q  T )  <Q  R )
4923simprd 114 . . . . . . 7  |-  ( ph  ->  U  e.  ( 2nd `  A ) )
5022, 49jca 306 . . . . . 6  |-  ( ph  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A ) ) )
5150adantr 276 . . . . 5  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( A  e.  P.  /\  U  e.  ( 2nd `  A
) ) )
5227anim1i 340 . . . . 5  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )
5340adantr 276 . . . . 5  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  R  e.  Q. )
54 mulnqpru 7636 . . . . 5  |-  ( ( ( ( A  e. 
P.  /\  U  e.  ( 2nd `  A ) )  /\  ( B  e.  P.  /\  T  e.  ( 2nd `  B
) ) )  /\  R  e.  Q. )  ->  ( ( U  .Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  .P.  B
) ) ) )
5551, 52, 53, 54syl21anc 1248 . . . 4  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( ( U  .Q  T )  <Q  R  ->  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
5648, 55mpd 13 . . 3  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  R  e.  ( 2nd `  ( A  .P.  B ) ) )
5756olcd 735 . 2  |-  ( (
ph  /\  T  e.  ( 2nd `  B ) )  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
58 mullocprlem.edutdu . . . 4  |-  ( ph  ->  ( E  .Q  ( D  .Q  U ) ) 
<Q  ( T  .Q  ( D  .Q  U ) ) )
59 mulclnq 7443 . . . . . . 7  |-  ( ( D  e.  Q.  /\  U  e.  Q. )  ->  ( D  .Q  U
)  e.  Q. )
604, 59syl 14 . . . . . 6  |-  ( ph  ->  ( D  .Q  U
)  e.  Q. )
61 ltmnqg 7468 . . . . . 6  |-  ( ( E  e.  Q.  /\  T  e.  Q.  /\  ( D  .Q  U )  e. 
Q. )  ->  ( E  <Q  T  <->  ( ( D  .Q  U )  .Q  E )  <Q  (
( D  .Q  U
)  .Q  T ) ) )
623, 34, 60, 61syl3anc 1249 . . . . 5  |-  ( ph  ->  ( E  <Q  T  <->  ( ( D  .Q  U )  .Q  E )  <Q  (
( D  .Q  U
)  .Q  T ) ) )
63 mulcomnqg 7450 . . . . . . 7  |-  ( ( ( D  .Q  U
)  e.  Q.  /\  E  e.  Q. )  ->  ( ( D  .Q  U )  .Q  E
)  =  ( E  .Q  ( D  .Q  U ) ) )
6460, 3, 63syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( D  .Q  U )  .Q  E
)  =  ( E  .Q  ( D  .Q  U ) ) )
65 mulcomnqg 7450 . . . . . . 7  |-  ( ( ( D  .Q  U
)  e.  Q.  /\  T  e.  Q. )  ->  ( ( D  .Q  U )  .Q  T
)  =  ( T  .Q  ( D  .Q  U ) ) )
6660, 34, 65syl2anc 411 . . . . . 6  |-  ( ph  ->  ( ( D  .Q  U )  .Q  T
)  =  ( T  .Q  ( D  .Q  U ) ) )
6764, 66breq12d 4046 . . . . 5  |-  ( ph  ->  ( ( ( D  .Q  U )  .Q  E )  <Q  (
( D  .Q  U
)  .Q  T )  <-> 
( E  .Q  ( D  .Q  U ) ) 
<Q  ( T  .Q  ( D  .Q  U ) ) ) )
6862, 67bitrd 188 . . . 4  |-  ( ph  ->  ( E  <Q  T  <->  ( E  .Q  ( D  .Q  U
) )  <Q  ( T  .Q  ( D  .Q  U ) ) ) )
6958, 68mpbird 167 . . 3  |-  ( ph  ->  E  <Q  T )
70 prop 7542 . . . 4  |-  ( B  e.  P.  ->  <. ( 1st `  B ) ,  ( 2nd `  B
) >.  e.  P. )
71 prloc 7558 . . . 4  |-  ( (
<. ( 1st `  B
) ,  ( 2nd `  B ) >.  e.  P.  /\  E  <Q  T )  ->  ( E  e.  ( 1st `  B )  \/  T  e.  ( 2nd `  B ) ) )
7270, 71sylan 283 . . 3  |-  ( ( B  e.  P.  /\  E  <Q  T )  -> 
( E  e.  ( 1st `  B )  \/  T  e.  ( 2nd `  B ) ) )
7327, 69, 72syl2anc 411 . 2  |-  ( ph  ->  ( E  e.  ( 1st `  B )  \/  T  e.  ( 2nd `  B ) ) )
7433, 57, 73mpjaodan 799 1  |-  ( ph  ->  ( Q  e.  ( 1st `  ( A  .P.  B ) )  \/  R  e.  ( 2nd `  ( A  .P.  B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709    /\ w3a 980    = wceq 1364    e. wcel 2167   <.cop 3625   class class class wbr 4033   ` cfv 5258  (class class class)co 5922   1stc1st 6196   2ndc2nd 6197   Q.cnq 7347    .Q cmq 7350    <Q cltq 7352   P.cnp 7358    .P. cmp 7361
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-eprel 4324  df-id 4328  df-iord 4401  df-on 4403  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-1o 6474  df-oadd 6478  df-omul 6479  df-er 6592  df-ec 6594  df-qs 6598  df-ni 7371  df-mi 7373  df-lti 7374  df-mpq 7412  df-enq 7414  df-nqqs 7415  df-mqqs 7417  df-1nqqs 7418  df-rq 7419  df-ltnqqs 7420  df-inp 7533  df-imp 7536
This theorem is referenced by:  mullocpr  7638
  Copyright terms: Public domain W3C validator