| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mullocprlem | Unicode version | ||
| Description: Calculations for mullocpr 7683. (Contributed by Jim Kingdon, 10-Dec-2019.) |
| Ref | Expression |
|---|---|
| mullocprlem.ab |
|
| mullocprlem.uqedu |
|
| mullocprlem.edutdu |
|
| mullocprlem.tdudr |
|
| mullocprlem.qr |
|
| mullocprlem.duq |
|
| mullocprlem.du |
|
| mullocprlem.et |
|
| Ref | Expression |
|---|---|
| mullocprlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mullocprlem.uqedu |
. . . . . . 7
| |
| 2 | mullocprlem.et |
. . . . . . . . 9
| |
| 3 | 2 | simpld 112 |
. . . . . . . 8
|
| 4 | mullocprlem.duq |
. . . . . . . . 9
| |
| 5 | 4 | simpld 112 |
. . . . . . . 8
|
| 6 | 4 | simprd 114 |
. . . . . . . 8
|
| 7 | mulcomnqg 7495 |
. . . . . . . . 9
| |
| 8 | 7 | adantl 277 |
. . . . . . . 8
|
| 9 | mulassnqg 7496 |
. . . . . . . . 9
| |
| 10 | 9 | adantl 277 |
. . . . . . . 8
|
| 11 | 3, 5, 6, 8, 10 | caov13d 6129 |
. . . . . . 7
|
| 12 | 1, 11 | breqtrd 4069 |
. . . . . 6
|
| 13 | mullocprlem.qr |
. . . . . . . 8
| |
| 14 | 13 | simpld 112 |
. . . . . . 7
|
| 15 | mulclnq 7488 |
. . . . . . . 8
| |
| 16 | 5, 3, 15 | syl2anc 411 |
. . . . . . 7
|
| 17 | ltmnqg 7513 |
. . . . . . 7
| |
| 18 | 14, 16, 6, 17 | syl3anc 1249 |
. . . . . 6
|
| 19 | 12, 18 | mpbird 167 |
. . . . 5
|
| 20 | 19 | adantr 276 |
. . . 4
|
| 21 | mullocprlem.ab |
. . . . . . . 8
| |
| 22 | 21 | simpld 112 |
. . . . . . 7
|
| 23 | mullocprlem.du |
. . . . . . . 8
| |
| 24 | 23 | simpld 112 |
. . . . . . 7
|
| 25 | 22, 24 | jca 306 |
. . . . . 6
|
| 26 | 25 | adantr 276 |
. . . . 5
|
| 27 | 21 | simprd 114 |
. . . . . 6
|
| 28 | 27 | anim1i 340 |
. . . . 5
|
| 29 | 14 | adantr 276 |
. . . . 5
|
| 30 | mulnqprl 7680 |
. . . . 5
| |
| 31 | 26, 28, 29, 30 | syl21anc 1248 |
. . . 4
|
| 32 | 20, 31 | mpd 13 |
. . 3
|
| 33 | 32 | orcd 734 |
. 2
|
| 34 | 2 | simprd 114 |
. . . . . . 7
|
| 35 | mulcomnqg 7495 |
. . . . . . 7
| |
| 36 | 34, 6, 35 | syl2anc 411 |
. . . . . 6
|
| 37 | mullocprlem.tdudr |
. . . . . . 7
| |
| 38 | mulclnq 7488 |
. . . . . . . . . 10
| |
| 39 | 34, 6, 38 | syl2anc 411 |
. . . . . . . . 9
|
| 40 | 13 | simprd 114 |
. . . . . . . . 9
|
| 41 | ltmnqg 7513 |
. . . . . . . . 9
| |
| 42 | 39, 40, 5, 41 | syl3anc 1249 |
. . . . . . . 8
|
| 43 | 34, 5, 6, 8, 10 | caov12d 6127 |
. . . . . . . . 9
|
| 44 | 43 | breq1d 4053 |
. . . . . . . 8
|
| 45 | 42, 44 | bitr4d 191 |
. . . . . . 7
|
| 46 | 37, 45 | mpbird 167 |
. . . . . 6
|
| 47 | 36, 46 | eqbrtrrd 4067 |
. . . . 5
|
| 48 | 47 | adantr 276 |
. . . 4
|
| 49 | 23 | simprd 114 |
. . . . . . 7
|
| 50 | 22, 49 | jca 306 |
. . . . . 6
|
| 51 | 50 | adantr 276 |
. . . . 5
|
| 52 | 27 | anim1i 340 |
. . . . 5
|
| 53 | 40 | adantr 276 |
. . . . 5
|
| 54 | mulnqpru 7681 |
. . . . 5
| |
| 55 | 51, 52, 53, 54 | syl21anc 1248 |
. . . 4
|
| 56 | 48, 55 | mpd 13 |
. . 3
|
| 57 | 56 | olcd 735 |
. 2
|
| 58 | mullocprlem.edutdu |
. . . 4
| |
| 59 | mulclnq 7488 |
. . . . . . 7
| |
| 60 | 4, 59 | syl 14 |
. . . . . 6
|
| 61 | ltmnqg 7513 |
. . . . . 6
| |
| 62 | 3, 34, 60, 61 | syl3anc 1249 |
. . . . 5
|
| 63 | mulcomnqg 7495 |
. . . . . . 7
| |
| 64 | 60, 3, 63 | syl2anc 411 |
. . . . . 6
|
| 65 | mulcomnqg 7495 |
. . . . . . 7
| |
| 66 | 60, 34, 65 | syl2anc 411 |
. . . . . 6
|
| 67 | 64, 66 | breq12d 4056 |
. . . . 5
|
| 68 | 62, 67 | bitrd 188 |
. . . 4
|
| 69 | 58, 68 | mpbird 167 |
. . 3
|
| 70 | prop 7587 |
. . . 4
| |
| 71 | prloc 7603 |
. . . 4
| |
| 72 | 70, 71 | sylan 283 |
. . 3
|
| 73 | 27, 69, 72 | syl2anc 411 |
. 2
|
| 74 | 33, 57, 73 | mpjaodan 799 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-eprel 4335 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-1o 6501 df-oadd 6505 df-omul 6506 df-er 6619 df-ec 6621 df-qs 6625 df-ni 7416 df-mi 7418 df-lti 7419 df-mpq 7457 df-enq 7459 df-nqqs 7460 df-mqqs 7462 df-1nqqs 7463 df-rq 7464 df-ltnqqs 7465 df-inp 7578 df-imp 7581 |
| This theorem is referenced by: mullocpr 7683 |
| Copyright terms: Public domain | W3C validator |