Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mullocprlem | Unicode version |
Description: Calculations for mullocpr 7520. (Contributed by Jim Kingdon, 10-Dec-2019.) |
Ref | Expression |
---|---|
mullocprlem.ab | |
mullocprlem.uqedu | |
mullocprlem.edutdu | |
mullocprlem.tdudr | |
mullocprlem.qr | |
mullocprlem.duq | |
mullocprlem.du | |
mullocprlem.et |
Ref | Expression |
---|---|
mullocprlem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mullocprlem.uqedu | . . . . . . 7 | |
2 | mullocprlem.et | . . . . . . . . 9 | |
3 | 2 | simpld 111 | . . . . . . . 8 |
4 | mullocprlem.duq | . . . . . . . . 9 | |
5 | 4 | simpld 111 | . . . . . . . 8 |
6 | 4 | simprd 113 | . . . . . . . 8 |
7 | mulcomnqg 7332 | . . . . . . . . 9 | |
8 | 7 | adantl 275 | . . . . . . . 8 |
9 | mulassnqg 7333 | . . . . . . . . 9 | |
10 | 9 | adantl 275 | . . . . . . . 8 |
11 | 3, 5, 6, 8, 10 | caov13d 6033 | . . . . . . 7 |
12 | 1, 11 | breqtrd 4013 | . . . . . 6 |
13 | mullocprlem.qr | . . . . . . . 8 | |
14 | 13 | simpld 111 | . . . . . . 7 |
15 | mulclnq 7325 | . . . . . . . 8 | |
16 | 5, 3, 15 | syl2anc 409 | . . . . . . 7 |
17 | ltmnqg 7350 | . . . . . . 7 | |
18 | 14, 16, 6, 17 | syl3anc 1233 | . . . . . 6 |
19 | 12, 18 | mpbird 166 | . . . . 5 |
20 | 19 | adantr 274 | . . . 4 |
21 | mullocprlem.ab | . . . . . . . 8 | |
22 | 21 | simpld 111 | . . . . . . 7 |
23 | mullocprlem.du | . . . . . . . 8 | |
24 | 23 | simpld 111 | . . . . . . 7 |
25 | 22, 24 | jca 304 | . . . . . 6 |
26 | 25 | adantr 274 | . . . . 5 |
27 | 21 | simprd 113 | . . . . . 6 |
28 | 27 | anim1i 338 | . . . . 5 |
29 | 14 | adantr 274 | . . . . 5 |
30 | mulnqprl 7517 | . . . . 5 | |
31 | 26, 28, 29, 30 | syl21anc 1232 | . . . 4 |
32 | 20, 31 | mpd 13 | . . 3 |
33 | 32 | orcd 728 | . 2 |
34 | 2 | simprd 113 | . . . . . . 7 |
35 | mulcomnqg 7332 | . . . . . . 7 | |
36 | 34, 6, 35 | syl2anc 409 | . . . . . 6 |
37 | mullocprlem.tdudr | . . . . . . 7 | |
38 | mulclnq 7325 | . . . . . . . . . 10 | |
39 | 34, 6, 38 | syl2anc 409 | . . . . . . . . 9 |
40 | 13 | simprd 113 | . . . . . . . . 9 |
41 | ltmnqg 7350 | . . . . . . . . 9 | |
42 | 39, 40, 5, 41 | syl3anc 1233 | . . . . . . . 8 |
43 | 34, 5, 6, 8, 10 | caov12d 6031 | . . . . . . . . 9 |
44 | 43 | breq1d 3997 | . . . . . . . 8 |
45 | 42, 44 | bitr4d 190 | . . . . . . 7 |
46 | 37, 45 | mpbird 166 | . . . . . 6 |
47 | 36, 46 | eqbrtrrd 4011 | . . . . 5 |
48 | 47 | adantr 274 | . . . 4 |
49 | 23 | simprd 113 | . . . . . . 7 |
50 | 22, 49 | jca 304 | . . . . . 6 |
51 | 50 | adantr 274 | . . . . 5 |
52 | 27 | anim1i 338 | . . . . 5 |
53 | 40 | adantr 274 | . . . . 5 |
54 | mulnqpru 7518 | . . . . 5 | |
55 | 51, 52, 53, 54 | syl21anc 1232 | . . . 4 |
56 | 48, 55 | mpd 13 | . . 3 |
57 | 56 | olcd 729 | . 2 |
58 | mullocprlem.edutdu | . . . 4 | |
59 | mulclnq 7325 | . . . . . . 7 | |
60 | 4, 59 | syl 14 | . . . . . 6 |
61 | ltmnqg 7350 | . . . . . 6 | |
62 | 3, 34, 60, 61 | syl3anc 1233 | . . . . 5 |
63 | mulcomnqg 7332 | . . . . . . 7 | |
64 | 60, 3, 63 | syl2anc 409 | . . . . . 6 |
65 | mulcomnqg 7332 | . . . . . . 7 | |
66 | 60, 34, 65 | syl2anc 409 | . . . . . 6 |
67 | 64, 66 | breq12d 4000 | . . . . 5 |
68 | 62, 67 | bitrd 187 | . . . 4 |
69 | 58, 68 | mpbird 166 | . . 3 |
70 | prop 7424 | . . . 4 | |
71 | prloc 7440 | . . . 4 | |
72 | 70, 71 | sylan 281 | . . 3 |
73 | 27, 69, 72 | syl2anc 409 | . 2 |
74 | 33, 57, 73 | mpjaodan 793 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wo 703 w3a 973 wceq 1348 wcel 2141 cop 3584 class class class wbr 3987 cfv 5196 (class class class)co 5850 c1st 6114 c2nd 6115 cnq 7229 cmq 7232 cltq 7234 cnp 7240 cmp 7243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5853 df-oprab 5854 df-mpo 5855 df-1st 6116 df-2nd 6117 df-recs 6281 df-irdg 6346 df-1o 6392 df-oadd 6396 df-omul 6397 df-er 6509 df-ec 6511 df-qs 6515 df-ni 7253 df-mi 7255 df-lti 7256 df-mpq 7294 df-enq 7296 df-nqqs 7297 df-mqqs 7299 df-1nqqs 7300 df-rq 7301 df-ltnqqs 7302 df-inp 7415 df-imp 7418 |
This theorem is referenced by: mullocpr 7520 |
Copyright terms: Public domain | W3C validator |