ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt22f Unicode version

Theorem cnmpt22f 12945
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
cnmpt22f.f  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
Assertion
Ref Expression
cnmpt22f  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Distinct variable groups:    x, y, F   
x, L, y    ph, x, y    x, X, y    x, M, y    x, N, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt22f
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt21.k . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmpt21.a . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
4 cnmpt2t.b . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
5 cntop2 12852 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
63, 5syl 14 . . 3  |-  ( ph  ->  L  e.  Top )
7 toptopon2 12667 . . 3  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
86, 7sylib 121 . 2  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
9 cntop2 12852 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
104, 9syl 14 . . 3  |-  ( ph  ->  M  e.  Top )
11 toptopon2 12667 . . 3  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
1210, 11sylib 121 . 2  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
13 txtopon 12912 . . . . . . 7  |-  ( ( L  e.  (TopOn `  U. L )  /\  M  e.  (TopOn `  U. M ) )  ->  ( L  tX  M )  e.  (TopOn `  ( U. L  X.  U. M ) ) )
148, 12, 13syl2anc 409 . . . . . 6  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) ) )
15 cnmpt22f.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
16 cntop2 12852 . . . . . . . 8  |-  ( F  e.  ( ( L 
tX  M )  Cn  N )  ->  N  e.  Top )
1715, 16syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  Top )
18 toptopon2 12667 . . . . . . 7  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1917, 18sylib 121 . . . . . 6  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
20 cnf2 12855 . . . . . 6  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) )  /\  N  e.  (TopOn `  U. N )  /\  F  e.  ( ( L  tX  M )  Cn  N
) )  ->  F : ( U. L  X.  U. M ) --> U. N )
2114, 19, 15, 20syl3anc 1228 . . . . 5  |-  ( ph  ->  F : ( U. L  X.  U. M ) --> U. N )
2221ffnd 5338 . . . 4  |-  ( ph  ->  F  Fn  ( U. L  X.  U. M ) )
23 fnovim 5950 . . . 4  |-  ( F  Fn  ( U. L  X.  U. M )  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2422, 23syl 14 . . 3  |-  ( ph  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2524, 15eqeltrrd 2244 . 2  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) )  e.  ( ( L  tX  M )  Cn  N
) )
26 oveq12 5851 . 2  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z F w )  =  ( A F B ) )
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 12944 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   U.cuni 3789    X. cxp 4602    Fn wfn 5183   -->wf 5184   ` cfv 5188  (class class class)co 5842    e. cmpo 5844   Topctop 12645  TopOnctopon 12658    Cn ccn 12835    tX ctx 12902
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-map 6616  df-topgen 12577  df-top 12646  df-topon 12659  df-bases 12691  df-cn 12838  df-tx 12903
This theorem is referenced by:  cnmptcom  12948  divcnap  13205  cnrehmeocntop  13243
  Copyright terms: Public domain W3C validator