ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnmpt22f Unicode version

Theorem cnmpt22f 12464
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
cnmpt21.j  |-  ( ph  ->  J  e.  (TopOn `  X ) )
cnmpt21.k  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
cnmpt21.a  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
cnmpt2t.b  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
cnmpt22f.f  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
Assertion
Ref Expression
cnmpt22f  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Distinct variable groups:    x, y, F   
x, L, y    ph, x, y    x, X, y    x, M, y    x, N, y   
x, Y, y
Allowed substitution hints:    A( x, y)    B( x, y)    J( x, y)    K( x, y)

Proof of Theorem cnmpt22f
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnmpt21.j . 2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 cnmpt21.k . 2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
3 cnmpt21.a . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  A )  e.  ( ( J  tX  K
)  Cn  L ) )
4 cnmpt2t.b . 2  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  B )  e.  ( ( J  tX  K
)  Cn  M ) )
5 cntop2 12371 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  A )  e.  ( ( J  tX  K )  Cn  L )  ->  L  e.  Top )
63, 5syl 14 . . 3  |-  ( ph  ->  L  e.  Top )
7 toptopon2 12186 . . 3  |-  ( L  e.  Top  <->  L  e.  (TopOn `  U. L ) )
86, 7sylib 121 . 2  |-  ( ph  ->  L  e.  (TopOn `  U. L ) )
9 cntop2 12371 . . . 4  |-  ( ( x  e.  X , 
y  e.  Y  |->  B )  e.  ( ( J  tX  K )  Cn  M )  ->  M  e.  Top )
104, 9syl 14 . . 3  |-  ( ph  ->  M  e.  Top )
11 toptopon2 12186 . . 3  |-  ( M  e.  Top  <->  M  e.  (TopOn `  U. M ) )
1210, 11sylib 121 . 2  |-  ( ph  ->  M  e.  (TopOn `  U. M ) )
13 txtopon 12431 . . . . . . 7  |-  ( ( L  e.  (TopOn `  U. L )  /\  M  e.  (TopOn `  U. M ) )  ->  ( L  tX  M )  e.  (TopOn `  ( U. L  X.  U. M ) ) )
148, 12, 13syl2anc 408 . . . . . 6  |-  ( ph  ->  ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) ) )
15 cnmpt22f.f . . . . . . . 8  |-  ( ph  ->  F  e.  ( ( L  tX  M )  Cn  N ) )
16 cntop2 12371 . . . . . . . 8  |-  ( F  e.  ( ( L 
tX  M )  Cn  N )  ->  N  e.  Top )
1715, 16syl 14 . . . . . . 7  |-  ( ph  ->  N  e.  Top )
18 toptopon2 12186 . . . . . . 7  |-  ( N  e.  Top  <->  N  e.  (TopOn `  U. N ) )
1917, 18sylib 121 . . . . . 6  |-  ( ph  ->  N  e.  (TopOn `  U. N ) )
20 cnf2 12374 . . . . . 6  |-  ( ( ( L  tX  M
)  e.  (TopOn `  ( U. L  X.  U. M ) )  /\  N  e.  (TopOn `  U. N )  /\  F  e.  ( ( L  tX  M )  Cn  N
) )  ->  F : ( U. L  X.  U. M ) --> U. N )
2114, 19, 15, 20syl3anc 1216 . . . . 5  |-  ( ph  ->  F : ( U. L  X.  U. M ) --> U. N )
2221ffnd 5273 . . . 4  |-  ( ph  ->  F  Fn  ( U. L  X.  U. M ) )
23 fnovim 5879 . . . 4  |-  ( F  Fn  ( U. L  X.  U. M )  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2422, 23syl 14 . . 3  |-  ( ph  ->  F  =  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) ) )
2524, 15eqeltrrd 2217 . 2  |-  ( ph  ->  ( z  e.  U. L ,  w  e.  U. M  |->  ( z F w ) )  e.  ( ( L  tX  M )  Cn  N
) )
26 oveq12 5783 . 2  |-  ( ( z  =  A  /\  w  =  B )  ->  ( z F w )  =  ( A F B ) )
271, 2, 3, 4, 8, 12, 25, 26cnmpt22 12463 1  |-  ( ph  ->  ( x  e.  X ,  y  e.  Y  |->  ( A F B ) )  e.  ( ( J  tX  K
)  Cn  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480   U.cuni 3736    X. cxp 4537    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776   Topctop 12164  TopOnctopon 12177    Cn ccn 12354    tX ctx 12421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-topgen 12141  df-top 12165  df-topon 12178  df-bases 12210  df-cn 12357  df-tx 12422
This theorem is referenced by:  cnmptcom  12467  divcnap  12724  cnrehmeocntop  12762
  Copyright terms: Public domain W3C validator