Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > cnmpt22f | Unicode version |
Description: The composition of continuous functions is continuous. (Contributed by Mario Carneiro, 5-May-2014.) (Revised by Mario Carneiro, 22-Aug-2015.) |
Ref | Expression |
---|---|
cnmpt21.j | TopOn |
cnmpt21.k | TopOn |
cnmpt21.a | |
cnmpt2t.b | |
cnmpt22f.f |
Ref | Expression |
---|---|
cnmpt22f |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnmpt21.j | . 2 TopOn | |
2 | cnmpt21.k | . 2 TopOn | |
3 | cnmpt21.a | . 2 | |
4 | cnmpt2t.b | . 2 | |
5 | cntop2 12852 | . . . 4 | |
6 | 3, 5 | syl 14 | . . 3 |
7 | toptopon2 12667 | . . 3 TopOn | |
8 | 6, 7 | sylib 121 | . 2 TopOn |
9 | cntop2 12852 | . . . 4 | |
10 | 4, 9 | syl 14 | . . 3 |
11 | toptopon2 12667 | . . 3 TopOn | |
12 | 10, 11 | sylib 121 | . 2 TopOn |
13 | txtopon 12912 | . . . . . . 7 TopOn TopOn TopOn | |
14 | 8, 12, 13 | syl2anc 409 | . . . . . 6 TopOn |
15 | cnmpt22f.f | . . . . . . . 8 | |
16 | cntop2 12852 | . . . . . . . 8 | |
17 | 15, 16 | syl 14 | . . . . . . 7 |
18 | toptopon2 12667 | . . . . . . 7 TopOn | |
19 | 17, 18 | sylib 121 | . . . . . 6 TopOn |
20 | cnf2 12855 | . . . . . 6 TopOn TopOn | |
21 | 14, 19, 15, 20 | syl3anc 1228 | . . . . 5 |
22 | 21 | ffnd 5338 | . . . 4 |
23 | fnovim 5950 | . . . 4 | |
24 | 22, 23 | syl 14 | . . 3 |
25 | 24, 15 | eqeltrrd 2244 | . 2 |
26 | oveq12 5851 | . 2 | |
27 | 1, 2, 3, 4, 8, 12, 25, 26 | cnmpt22 12944 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wceq 1343 wcel 2136 cuni 3789 cxp 4602 wfn 5183 wf 5184 cfv 5188 (class class class)co 5842 cmpo 5844 ctop 12645 TopOnctopon 12658 ccn 12835 ctx 12902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-map 6616 df-topgen 12577 df-top 12646 df-topon 12659 df-bases 12691 df-cn 12838 df-tx 12903 |
This theorem is referenced by: cnmptcom 12948 divcnap 13205 cnrehmeocntop 13243 |
Copyright terms: Public domain | W3C validator |