ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemuub GIF version

Theorem dedekindeulemuub 13235
Description: Lemma for dedekindeu 13241. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindeulemuub.u (𝜑𝐴𝑈)
Assertion
Ref Expression
dedekindeulemuub (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
Distinct variable groups:   𝐴,𝑞,𝑟,𝑧   𝐿,𝑞,𝑧   𝑈,𝑞,𝑧,𝑟   𝜑,𝑞,𝑧
Allowed substitution hints:   𝜑(𝑟)   𝐿(𝑟)

Proof of Theorem dedekindeulemuub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindeulemuub.u . . 3 (𝜑𝐴𝑈)
2 eleq1 2229 . . . . 5 (𝑟 = 𝐴 → (𝑟𝑈𝐴𝑈))
3 breq2 3986 . . . . . 6 (𝑟 = 𝐴 → (𝑞 < 𝑟𝑞 < 𝐴))
43rexbidv 2467 . . . . 5 (𝑟 = 𝐴 → (∃𝑞𝑈 𝑞 < 𝑟 ↔ ∃𝑞𝑈 𝑞 < 𝐴))
52, 4bibi12d 234 . . . 4 (𝑟 = 𝐴 → ((𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) ↔ (𝐴𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝐴)))
6 dedekindeu.ur . . . 4 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
7 dedekindeu.uss . . . . 5 (𝜑𝑈 ⊆ ℝ)
87, 1sseldd 3143 . . . 4 (𝜑𝐴 ∈ ℝ)
95, 6, 8rspcdva 2835 . . 3 (𝜑 → (𝐴𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝐴))
101, 9mpbid 146 . 2 (𝜑 → ∃𝑞𝑈 𝑞 < 𝐴)
11 dedekindeu.lss . . . . . 6 (𝜑𝐿 ⊆ ℝ)
1211ad2antrr 480 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝐿 ⊆ ℝ)
13 simpr 109 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧𝐿)
1412, 13sseldd 3143 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧 ∈ ℝ)
157ad2antrr 480 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑈 ⊆ ℝ)
16 simplrl 525 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑞𝑈)
1715, 16sseldd 3143 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑞 ∈ ℝ)
188ad2antrr 480 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝐴 ∈ ℝ)
19 breq1 3985 . . . . . . . . . 10 (𝑎 = 𝑞 → (𝑎 < 𝑧𝑞 < 𝑧))
2019rspcev 2830 . . . . . . . . 9 ((𝑞𝑈𝑞 < 𝑧) → ∃𝑎𝑈 𝑎 < 𝑧)
2116, 20sylan 281 . . . . . . . 8 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ∃𝑎𝑈 𝑎 < 𝑧)
2219cbvrexv 2693 . . . . . . . 8 (∃𝑎𝑈 𝑎 < 𝑧 ↔ ∃𝑞𝑈 𝑞 < 𝑧)
2321, 22sylib 121 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ∃𝑞𝑈 𝑞 < 𝑧)
24 eleq1 2229 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑟𝑈𝑧𝑈))
25 breq2 3986 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑞 < 𝑟𝑞 < 𝑧))
2625rexbidv 2467 . . . . . . . . 9 (𝑟 = 𝑧 → (∃𝑞𝑈 𝑞 < 𝑟 ↔ ∃𝑞𝑈 𝑞 < 𝑧))
2724, 26bibi12d 234 . . . . . . . 8 (𝑟 = 𝑧 → ((𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) ↔ (𝑧𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑧)))
286ad3antrrr 484 . . . . . . . 8 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
2914adantr 274 . . . . . . . 8 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝑧 ∈ ℝ)
3027, 28, 29rspcdva 2835 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → (𝑧𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑧))
3123, 30mpbird 166 . . . . . 6 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝑧𝑈)
32 simplll 523 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝜑)
3313adantr 274 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝑧𝐿)
34 dedekindeu.disj . . . . . . . . 9 (𝜑 → (𝐿𝑈) = ∅)
35 disj 3457 . . . . . . . . 9 ((𝐿𝑈) = ∅ ↔ ∀𝑧𝐿 ¬ 𝑧𝑈)
3634, 35sylib 121 . . . . . . . 8 (𝜑 → ∀𝑧𝐿 ¬ 𝑧𝑈)
3736r19.21bi 2554 . . . . . . 7 ((𝜑𝑧𝐿) → ¬ 𝑧𝑈)
3832, 33, 37syl2anc 409 . . . . . 6 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ¬ 𝑧𝑈)
3931, 38pm2.65da 651 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → ¬ 𝑞 < 𝑧)
4014, 17, 39nltled 8019 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧𝑞)
41 simplrr 526 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑞 < 𝐴)
4214, 17, 18, 40, 41lelttrd 8023 . . 3 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧 < 𝐴)
4342ralrimiva 2539 . 2 ((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) → ∀𝑧𝐿 𝑧 < 𝐴)
4410, 43rexlimddv 2588 1 (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 698   = wceq 1343  wcel 2136  wral 2444  wrex 2445  cin 3115  wss 3116  c0 3409   class class class wbr 3982  cr 7752   < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltwlin 7866
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-xp 4610  df-cnv 4612  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939
This theorem is referenced by:  dedekindeulemub  13236  dedekindeulemloc  13237
  Copyright terms: Public domain W3C validator