ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dedekindeulemuub GIF version

Theorem dedekindeulemuub 15204
Description: Lemma for dedekindeu 15210. Any element of the upper cut is an upper bound for the lower cut. (Contributed by Jim Kingdon, 2-Feb-2024.)
Hypotheses
Ref Expression
dedekindeu.lss (𝜑𝐿 ⊆ ℝ)
dedekindeu.uss (𝜑𝑈 ⊆ ℝ)
dedekindeu.lm (𝜑 → ∃𝑞 ∈ ℝ 𝑞𝐿)
dedekindeu.um (𝜑 → ∃𝑟 ∈ ℝ 𝑟𝑈)
dedekindeu.lr (𝜑 → ∀𝑞 ∈ ℝ (𝑞𝐿 ↔ ∃𝑟𝐿 𝑞 < 𝑟))
dedekindeu.ur (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
dedekindeu.disj (𝜑 → (𝐿𝑈) = ∅)
dedekindeu.loc (𝜑 → ∀𝑞 ∈ ℝ ∀𝑟 ∈ ℝ (𝑞 < 𝑟 → (𝑞𝐿𝑟𝑈)))
dedekindeulemuub.u (𝜑𝐴𝑈)
Assertion
Ref Expression
dedekindeulemuub (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
Distinct variable groups:   𝐴,𝑞,𝑟,𝑧   𝐿,𝑞,𝑧   𝑈,𝑞,𝑧,𝑟   𝜑,𝑞,𝑧
Allowed substitution hints:   𝜑(𝑟)   𝐿(𝑟)

Proof of Theorem dedekindeulemuub
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 dedekindeulemuub.u . . 3 (𝜑𝐴𝑈)
2 eleq1 2270 . . . . 5 (𝑟 = 𝐴 → (𝑟𝑈𝐴𝑈))
3 breq2 4063 . . . . . 6 (𝑟 = 𝐴 → (𝑞 < 𝑟𝑞 < 𝐴))
43rexbidv 2509 . . . . 5 (𝑟 = 𝐴 → (∃𝑞𝑈 𝑞 < 𝑟 ↔ ∃𝑞𝑈 𝑞 < 𝐴))
52, 4bibi12d 235 . . . 4 (𝑟 = 𝐴 → ((𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) ↔ (𝐴𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝐴)))
6 dedekindeu.ur . . . 4 (𝜑 → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
7 dedekindeu.uss . . . . 5 (𝜑𝑈 ⊆ ℝ)
87, 1sseldd 3202 . . . 4 (𝜑𝐴 ∈ ℝ)
95, 6, 8rspcdva 2889 . . 3 (𝜑 → (𝐴𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝐴))
101, 9mpbid 147 . 2 (𝜑 → ∃𝑞𝑈 𝑞 < 𝐴)
11 dedekindeu.lss . . . . . 6 (𝜑𝐿 ⊆ ℝ)
1211ad2antrr 488 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝐿 ⊆ ℝ)
13 simpr 110 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧𝐿)
1412, 13sseldd 3202 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧 ∈ ℝ)
157ad2antrr 488 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑈 ⊆ ℝ)
16 simplrl 535 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑞𝑈)
1715, 16sseldd 3202 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑞 ∈ ℝ)
188ad2antrr 488 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝐴 ∈ ℝ)
19 breq1 4062 . . . . . . . . . 10 (𝑎 = 𝑞 → (𝑎 < 𝑧𝑞 < 𝑧))
2019rspcev 2884 . . . . . . . . 9 ((𝑞𝑈𝑞 < 𝑧) → ∃𝑎𝑈 𝑎 < 𝑧)
2116, 20sylan 283 . . . . . . . 8 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ∃𝑎𝑈 𝑎 < 𝑧)
2219cbvrexv 2743 . . . . . . . 8 (∃𝑎𝑈 𝑎 < 𝑧 ↔ ∃𝑞𝑈 𝑞 < 𝑧)
2321, 22sylib 122 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ∃𝑞𝑈 𝑞 < 𝑧)
24 eleq1 2270 . . . . . . . . 9 (𝑟 = 𝑧 → (𝑟𝑈𝑧𝑈))
25 breq2 4063 . . . . . . . . . 10 (𝑟 = 𝑧 → (𝑞 < 𝑟𝑞 < 𝑧))
2625rexbidv 2509 . . . . . . . . 9 (𝑟 = 𝑧 → (∃𝑞𝑈 𝑞 < 𝑟 ↔ ∃𝑞𝑈 𝑞 < 𝑧))
2724, 26bibi12d 235 . . . . . . . 8 (𝑟 = 𝑧 → ((𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟) ↔ (𝑧𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑧)))
286ad3antrrr 492 . . . . . . . 8 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ∀𝑟 ∈ ℝ (𝑟𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑟))
2914adantr 276 . . . . . . . 8 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝑧 ∈ ℝ)
3027, 28, 29rspcdva 2889 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → (𝑧𝑈 ↔ ∃𝑞𝑈 𝑞 < 𝑧))
3123, 30mpbird 167 . . . . . 6 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝑧𝑈)
32 simplll 533 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝜑)
3313adantr 276 . . . . . . 7 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → 𝑧𝐿)
34 dedekindeu.disj . . . . . . . . 9 (𝜑 → (𝐿𝑈) = ∅)
35 disj 3517 . . . . . . . . 9 ((𝐿𝑈) = ∅ ↔ ∀𝑧𝐿 ¬ 𝑧𝑈)
3634, 35sylib 122 . . . . . . . 8 (𝜑 → ∀𝑧𝐿 ¬ 𝑧𝑈)
3736r19.21bi 2596 . . . . . . 7 ((𝜑𝑧𝐿) → ¬ 𝑧𝑈)
3832, 33, 37syl2anc 411 . . . . . 6 ((((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) ∧ 𝑞 < 𝑧) → ¬ 𝑧𝑈)
3931, 38pm2.65da 663 . . . . 5 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → ¬ 𝑞 < 𝑧)
4014, 17, 39nltled 8228 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧𝑞)
41 simplrr 536 . . . 4 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑞 < 𝐴)
4214, 17, 18, 40, 41lelttrd 8232 . . 3 (((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) ∧ 𝑧𝐿) → 𝑧 < 𝐴)
4342ralrimiva 2581 . 2 ((𝜑 ∧ (𝑞𝑈𝑞 < 𝐴)) → ∀𝑧𝐿 𝑧 < 𝐴)
4410, 43rexlimddv 2630 1 (𝜑 → ∀𝑧𝐿 𝑧 < 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 710   = wceq 1373  wcel 2178  wral 2486  wrex 2487  cin 3173  wss 3174  c0 3468   class class class wbr 4059  cr 7959   < clt 8142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-pre-ltwlin 8073
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-xp 4699  df-cnv 4701  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148
This theorem is referenced by:  dedekindeulemub  15205  dedekindeulemloc  15206
  Copyright terms: Public domain W3C validator