Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dju1en | Unicode version |
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
dju1en | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 6706 | . . . 4 | |
2 | 1 | adantr 274 | . . 3 |
3 | ensn1g 6739 | . . . . 5 | |
4 | 3 | ensymd 6725 | . . . 4 |
5 | 4 | adantr 274 | . . 3 |
6 | simpr 109 | . . . 4 | |
7 | disjsn 3621 | . . . 4 | |
8 | 6, 7 | sylibr 133 | . . 3 |
9 | djuenun 7141 | . . 3 ⊔ | |
10 | 2, 5, 8, 9 | syl3anc 1220 | . 2 ⊔ |
11 | df-suc 4331 | . 2 | |
12 | 10, 11 | breqtrrdi 4006 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wceq 1335 wcel 2128 cun 3100 cin 3101 c0 3394 csn 3560 class class class wbr 3965 csuc 4325 c1o 6353 cen 6680 ⊔ cdju 6975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-suc 4331 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-1st 6085 df-2nd 6086 df-1o 6360 df-er 6477 df-en 6683 df-dju 6976 df-inl 6985 df-inr 6986 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |