ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dju1en GIF version

Theorem dju1en 7062
Description: Cardinal addition with cardinal one (which is the same as ordinal one). Used in proof of Theorem 6J of [Enderton] p. 143. (Contributed by NM, 28-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
dju1en ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)

Proof of Theorem dju1en
StepHypRef Expression
1 enrefg 6651 . . . 4 (𝐴𝑉𝐴𝐴)
21adantr 274 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 𝐴𝐴)
3 ensn1g 6684 . . . . 5 (𝐴𝑉 → {𝐴} ≈ 1o)
43ensymd 6670 . . . 4 (𝐴𝑉 → 1o ≈ {𝐴})
54adantr 274 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → 1o ≈ {𝐴})
6 simpr 109 . . . 4 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → ¬ 𝐴𝐴)
7 disjsn 3580 . . . 4 ((𝐴 ∩ {𝐴}) = ∅ ↔ ¬ 𝐴𝐴)
86, 7sylibr 133 . . 3 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ∩ {𝐴}) = ∅)
9 djuenun 7061 . . 3 ((𝐴𝐴 ∧ 1o ≈ {𝐴} ∧ (𝐴 ∩ {𝐴}) = ∅) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴}))
102, 5, 8, 9syl3anc 1216 . 2 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ (𝐴 ∪ {𝐴}))
11 df-suc 4288 . 2 suc 𝐴 = (𝐴 ∪ {𝐴})
1210, 11breqtrrdi 3965 1 ((𝐴𝑉 ∧ ¬ 𝐴𝐴) → (𝐴 ⊔ 1o) ≈ suc 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103   = wceq 1331  wcel 1480  cun 3064  cin 3065  c0 3358  {csn 3522   class class class wbr 3924  suc csuc 4282  1oc1o 6299  cen 6625  cdju 6915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1st 6031  df-2nd 6032  df-1o 6306  df-er 6422  df-en 6628  df-dju 6916  df-inl 6925  df-inr 6926
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator