ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1qec Unicode version

Theorem 1qec 7448
Description: The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.)
Assertion
Ref Expression
1qec  |-  ( A  e.  N.  ->  1Q  =  [ <. A ,  A >. ]  ~Q  )

Proof of Theorem 1qec
StepHypRef Expression
1 df-1nqqs 7411 . 2  |-  1Q  =  [ <. 1o ,  1o >. ]  ~Q
2 1pi 7375 . . . 4  |-  1o  e.  N.
3 mulcanenqec 7446 . . . 4  |-  ( ( A  e.  N.  /\  1o  e.  N.  /\  1o  e.  N. )  ->  [ <. ( A  .N  1o ) ,  ( A  .N  1o ) >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
42, 2, 3mp3an23 1340 . . 3  |-  ( A  e.  N.  ->  [ <. ( A  .N  1o ) ,  ( A  .N  1o ) >. ]  ~Q  =  [ <. 1o ,  1o >. ]  ~Q  )
5 mulidpi 7378 . . . . 5  |-  ( A  e.  N.  ->  ( A  .N  1o )  =  A )
65, 5jca 306 . . . 4  |-  ( A  e.  N.  ->  (
( A  .N  1o )  =  A  /\  ( A  .N  1o )  =  A )
)
7 opeq12 3806 . . . 4  |-  ( ( ( A  .N  1o )  =  A  /\  ( A  .N  1o )  =  A )  -> 
<. ( A  .N  1o ) ,  ( A  .N  1o ) >.  =  <. A ,  A >. )
8 eceq1 6622 . . . 4  |-  ( <.
( A  .N  1o ) ,  ( A  .N  1o ) >.  =  <. A ,  A >.  ->  [ <. ( A  .N  1o ) ,  ( A  .N  1o ) >. ]  ~Q  =  [ <. A ,  A >. ]  ~Q  )
96, 7, 83syl 17 . . 3  |-  ( A  e.  N.  ->  [ <. ( A  .N  1o ) ,  ( A  .N  1o ) >. ]  ~Q  =  [ <. A ,  A >. ]  ~Q  )
104, 9eqtr3d 2228 . 2  |-  ( A  e.  N.  ->  [ <. 1o ,  1o >. ]  ~Q  =  [ <. A ,  A >. ]  ~Q  )
111, 10eqtrid 2238 1  |-  ( A  e.  N.  ->  1Q  =  [ <. A ,  A >. ]  ~Q  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   <.cop 3621  (class class class)co 5918   1oc1o 6462   [cec 6585   N.cnpi 7332    .N cmi 7334    ~Q ceq 7339   1Qc1q 7341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-ni 7364  df-mi 7366  df-enq 7407  df-1nqqs 7411
This theorem is referenced by:  recexnq  7450
  Copyright terms: Public domain W3C validator