ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  srgfcl Unicode version

Theorem srgfcl 13850
Description: Functionality of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (Revised by AV, 24-Aug-2021.)
Hypotheses
Ref Expression
srgfcl.b  |-  B  =  ( Base `  R
)
srgfcl.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
srgfcl  |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B
) )  ->  .x.  :
( B  X.  B
) --> B )

Proof of Theorem srgfcl
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 110 . 2  |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B
) )  ->  .x.  Fn  ( B  X.  B
) )
2 srgfcl.b . . . . . . . 8  |-  B  =  ( Base `  R
)
3 srgfcl.t . . . . . . . 8  |-  .x.  =  ( .r `  R )
42, 3srgcl 13847 . . . . . . 7  |-  ( ( R  e. SRing  /\  a  e.  B  /\  b  e.  B )  ->  (
a  .x.  b )  e.  B )
543expb 1207 . . . . . 6  |-  ( ( R  e. SRing  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a  .x.  b )  e.  B
)
65ralrimivva 2590 . . . . 5  |-  ( R  e. SRing  ->  A. a  e.  B  A. b  e.  B  ( a  .x.  b
)  e.  B )
7 fveq2 5599 . . . . . . . 8  |-  ( c  =  <. a ,  b
>.  ->  (  .x.  `  c
)  =  (  .x.  ` 
<. a ,  b >.
) )
87eleq1d 2276 . . . . . . 7  |-  ( c  =  <. a ,  b
>.  ->  ( (  .x.  `  c )  e.  B  <->  ( 
.x.  `  <. a ,  b >. )  e.  B
) )
9 df-ov 5970 . . . . . . . . 9  |-  ( a 
.x.  b )  =  (  .x.  `  <. a ,  b >. )
109eqcomi 2211 . . . . . . . 8  |-  (  .x.  ` 
<. a ,  b >.
)  =  ( a 
.x.  b )
1110eleq1i 2273 . . . . . . 7  |-  ( ( 
.x.  `  <. a ,  b >. )  e.  B  <->  ( a  .x.  b )  e.  B )
128, 11bitrdi 196 . . . . . 6  |-  ( c  =  <. a ,  b
>.  ->  ( (  .x.  `  c )  e.  B  <->  ( a  .x.  b )  e.  B ) )
1312ralxp 4839 . . . . 5  |-  ( A. c  e.  ( B  X.  B ) (  .x.  `  c )  e.  B  <->  A. a  e.  B  A. b  e.  B  (
a  .x.  b )  e.  B )
146, 13sylibr 134 . . . 4  |-  ( R  e. SRing  ->  A. c  e.  ( B  X.  B ) (  .x.  `  c
)  e.  B )
1514adantr 276 . . 3  |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B
) )  ->  A. c  e.  ( B  X.  B
) (  .x.  `  c
)  e.  B )
16 fnfvrnss 5763 . . 3  |-  ( ( 
.x.  Fn  ( B  X.  B )  /\  A. c  e.  ( B  X.  B ) (  .x.  `  c )  e.  B
)  ->  ran  .x.  C_  B
)
171, 15, 16syl2anc 411 . 2  |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B
) )  ->  ran  .x.  C_  B )
18 df-f 5294 . 2  |-  (  .x.  : ( B  X.  B
) --> B  <->  (  .x.  Fn  ( B  X.  B
)  /\  ran  .x.  C_  B
) )
191, 17, 18sylanbrc 417 1  |-  ( ( R  e. SRing  /\  .x.  Fn  ( B  X.  B
) )  ->  .x.  :
( B  X.  B
) --> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486    C_ wss 3174   <.cop 3646    X. cxp 4691   ran crn 4694    Fn wfn 5285   -->wf 5286   ` cfv 5290  (class class class)co 5967   Basecbs 12947   .rcmulr 13025  SRingcsrg 13840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mgp 13798  df-srg 13841
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator