| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > elfzd | Unicode version | ||
| Description: Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| Ref | Expression |
|---|---|
| elfzd.1 |
|
| elfzd.2 |
|
| elfzd.3 |
|
| elfzd.4 |
|
| elfzd.5 |
|
| Ref | Expression |
|---|---|
| elfzd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfzd.1 |
. . . 4
| |
| 2 | elfzd.2 |
. . . 4
| |
| 3 | elfzd.3 |
. . . 4
| |
| 4 | 1, 2, 3 | 3jca 1201 |
. . 3
|
| 5 | elfzd.4 |
. . 3
| |
| 6 | elfzd.5 |
. . 3
| |
| 7 | 4, 5, 6 | jca32 310 |
. 2
|
| 8 | elfz2 10211 |
. 2
| |
| 9 | 7, 8 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-neg 8320 df-z 9447 df-fz 10205 |
| This theorem is referenced by: fzoun 10379 seqf1oglem1 10741 seqfeq4g 10753 pfxccat3 11266 4sqexercise1 12921 4sqexercise2 12922 4sqlemsdc 12923 gsumfzfsumlemm 14551 lgseisenlem1 15749 lgsquadlem1 15756 |
| Copyright terms: Public domain | W3C validator |