ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemsdc Unicode version

Theorem 4sqlemsdc 12594
Description: Lemma for 4sq 12604. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular  A) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12592 and 4sqexercise2 12593 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

Hypothesis
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlemsdc  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, w, x, y, z
Allowed substitution hints:    S( x, y, z, w, n)

Proof of Theorem 4sqlemsdc
StepHypRef Expression
1 nn0negz 9377 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9363 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
31adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
42adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
53adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  -u A  e.  ZZ )
64adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  A  e.  ZZ )
75adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
86adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
98adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
10 elfzelz 10117 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
1110ad4antlr 495 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  x  e.  ZZ )
12 zsqcl2 10726 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1311, 12syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( x ^ 2 )  e.  NN0 )
14 elfzelz 10117 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( -u A ... A )  ->  y  e.  ZZ )
1514ad3antlr 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
y  e.  ZZ )
16 zsqcl2 10726 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( y ^ 2 )  e.  NN0 )
1813, 17nn0addcld 9323 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
19 elfzelz 10117 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( -u A ... A )  ->  z  e.  ZZ )
2019ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
z  e.  ZZ )
21 zsqcl2 10726 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  NN0 )
2220, 21syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( z ^ 2 )  e.  NN0 )
23 elfzelz 10117 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( -u A ... A )  ->  w  e.  ZZ )
2423adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  w  e.  ZZ )
25 zsqcl2 10726 . . . . . . . . . . . . . . 15  |-  ( w  e.  ZZ  ->  (
w ^ 2 )  e.  NN0 )
2624, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( w ^ 2 )  e.  NN0 )
2722, 26nn0addcld 9323 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( z ^
2 )  +  ( w ^ 2 ) )  e.  NN0 )
2818, 27nn0addcld 9323 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  NN0 )
2928nn0zd 9463 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  ZZ )
30 zdceq 9418 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  ZZ )  -> DECID 
A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
319, 29, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> DECID  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
327, 8, 31exfzdc 10333 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> DECID  E. w  e.  ( -u A ... A ) A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
331ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u A  e.  ZZ )
342ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  e.  ZZ )
35 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  ZZ )
3635zred 9465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  RR )
3734zred 9465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  e.  RR )
3836renegcld 8423 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  e.  RR )
3936resqcld 10808 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  e.  RR )
4035znegcld 9467 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  e.  ZZ )
41 zzlesq 10817 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u w  e.  ZZ  ->  -u w  <_  ( -u w ^ 2 ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  ( -u w ^ 2 ) )
4335zcnd 9466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  CC )
44 sqneg 10707 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  CC  ->  ( -u w ^ 2 )  =  ( w ^
2 ) )
4543, 44syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( -u w ^ 2 )  =  ( w ^ 2 ) )
4642, 45breqtrd 4060 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  (
w ^ 2 ) )
4719ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  z  e.  ZZ )
4847, 21syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( z ^
2 )  e.  NN0 )
4925adantl 277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  e.  NN0 )
5048, 49nn0addcld 9323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
5150nn0red 9320 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  e.  RR )
5210ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  x  e.  ZZ )
5352, 12syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( x ^
2 )  e.  NN0 )
5414ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  y  e.  ZZ )
5554, 16syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( y ^
2 )  e.  NN0 )
5653, 55nn0addcld 9323 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
5756, 50nn0addcld 9323 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  e.  NN0 )
5857nn0red 9320 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  e.  RR )
59 nn0addge2 9313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w ^ 2 )  e.  RR  /\  ( z ^ 2 )  e.  NN0 )  ->  ( w ^ 2 )  <_  ( (
z ^ 2 )  +  ( w ^
2 ) ) )
6039, 48, 59syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  (
( z ^ 2 )  +  ( w ^ 2 ) ) )
61 nn0addge2 9313 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z ^
2 )  +  ( w ^ 2 ) )  e.  RR  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )  ->  ( ( z ^
2 )  +  ( w ^ 2 ) )  <_  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
6251, 56, 61syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  <_  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
6339, 51, 58, 60, 62letrd 8167 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
64 simplr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
6563, 64breqtrrd 4062 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  A
)
6638, 39, 37, 46, 65letrd 8167 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  A
)
6736, 37, 66lenegcon1d 8571 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u A  <_  w
)
68 zzlesq 10817 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ZZ  ->  w  <_  ( w ^ 2 ) )
6968adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  <_  (
w ^ 2 ) )
7036, 39, 37, 69, 65letrd 8167 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  <_  A
)
7133, 34, 35, 67, 70elfzd 10108 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  (
-u A ... A
) )
7271ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  ->  ( w  e.  ZZ  ->  w  e.  ( -u A ... A
) ) )
7372, 23impbid1 142 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  ->  ( w  e.  ZZ  <->  w  e.  ( -u A ... A ) ) )
7473ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( w  e.  ZZ  <->  w  e.  ( -u A ... A ) ) ) )
7574pm5.32rd 451 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( ( w  e.  ZZ  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  <->  ( w  e.  ( -u A ... A )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) ) )
7675rexbidv2 2500 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. w  e.  ( -u A ... A ) A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
7776dcbid 839 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
(DECID 
E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <-> DECID  E. w  e.  (
-u A ... A
) A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
7832, 77mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> DECID  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
795, 6, 78exfzdc 10333 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  E. z  e.  (
-u A ... A
) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
801ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u A  e.  ZZ )
812ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  e.  ZZ )
82 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
8382zred 9465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  RR )
8481zred 9465 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  e.  RR )
8583renegcld 8423 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  e.  RR )
8683resqcld 10808 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  e.  RR )
8782znegcld 9467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  e.  ZZ )
88 zzlesq 10817 . . . . . . . . . . . . . . . . . 18  |-  ( -u z  e.  ZZ  ->  -u z  <_  ( -u z ^ 2 ) )
8987, 88syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  ( -u z ^
2 ) )
9082zcnd 9466 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  CC )
91 sqneg 10707 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  CC  ->  ( -u z ^ 2 )  =  ( z ^
2 ) )
9290, 91syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  ( -u z ^ 2 )  =  ( z ^
2 ) )
9389, 92breqtrd 4060 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  ( z ^ 2 ) )
9421adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
9525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
9694, 95nn0addcld 9323 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
9796nn0red 9320 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  RR )
9810ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  x  e.  ZZ )
9998, 12syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
10014ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  y  e.  ZZ )
101100, 16syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
10299, 101nn0addcld 9323 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
103102, 96nn0addcld 9323 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
104103nn0red 9320 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
105 nn0addge1 9312 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z ^ 2 )  e.  RR  /\  ( w ^ 2 )  e.  NN0 )  ->  ( z ^ 2 )  <_  ( (
z ^ 2 )  +  ( w ^
2 ) ) )
10686, 95, 105syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )
10797, 102, 61syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
10886, 97, 104, 106, 107letrd 8167 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
109 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
110108, 109breqtrrd 4062 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  A )
11185, 86, 84, 93, 110letrd 8167 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  A )
11283, 84, 111lenegcon1d 8571 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u A  <_  z )
113 zzlesq 10817 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ZZ  ->  z  <_  ( z ^ 2 ) )
114113adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  <_  ( z ^ 2 ) )
11583, 86, 84, 114, 110letrd 8167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  <_  A )
11680, 81, 82, 112, 115elfzd 10108 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  ( -u A ... A ) )
117116ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( z  e.  ZZ  ->  z  e.  ( -u A ... A
) ) )
118117, 19impbid1 142 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( z  e.  ZZ  <->  z  e.  (
-u A ... A
) ) )
119118rexlimdva2 2617 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  ( E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  -> 
( z  e.  ZZ  <->  z  e.  ( -u A ... A ) ) ) )
120119pm5.32rd 451 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
( z  e.  ZZ  /\ 
E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  <-> 
( z  e.  (
-u A ... A
)  /\  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
121120rexbidv2 2500 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ( -u A ... A ) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
122121dcbid 839 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (DECID  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <-> DECID  E. z  e.  ( -u A ... A ) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
12379, 122mpbird 167 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
1243, 4, 123exfzdc 10333 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ( -u A ... A ) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1251ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u A  e.  ZZ )
1262ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  e.  ZZ )
127 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  ZZ )
128127zred 9465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  RR )
129126zred 9465 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  e.  RR )
130128renegcld 8423 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  e.  RR )
131128resqcld 10808 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  e.  RR )
132127znegcld 9467 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  e.  ZZ )
133 zzlesq 10817 . . . . . . . . . . . . . . . . 17  |-  ( -u y  e.  ZZ  ->  -u y  <_  ( -u y ^ 2 ) )
134132, 133syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  ( -u y ^
2 ) )
135127zcnd 9466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  CC )
136 sqneg 10707 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
137135, 136syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
138134, 137breqtrd 4060 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  ( y ^ 2 ) )
13910ad5antlr 497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  x  e.  ZZ )
140139, 12syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
14116adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
142140, 141nn0addcld 9323 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
143142nn0red 9320 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  RR )
14421ad4antlr 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
14525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
146144, 145nn0addcld 9323 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
147142, 146nn0addcld 9323 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
148147nn0red 9320 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
149 nn0addge2 9313 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ^ 2 )  e.  RR  /\  ( x ^ 2 )  e.  NN0 )  ->  ( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
150131, 140, 149syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
151 nn0addge1 9312 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  RR  /\  ( ( z ^
2 )  +  ( w ^ 2 ) )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
152143, 146, 151syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
153131, 143, 148, 150, 152letrd 8167 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
154 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
155153, 154breqtrrd 4062 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  A )
156130, 131, 129, 138, 155letrd 8167 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  A )
157128, 129, 156lenegcon1d 8571 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u A  <_  y )
158 zzlesq 10817 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  y  <_  ( y ^ 2 ) )
159158adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  <_  ( y ^ 2 ) )
160128, 131, 129, 159, 155letrd 8167 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  <_  A )
161125, 126, 127, 157, 160elfzd 10108 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  ( -u A ... A ) )
162161ex 115 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( y  e.  ZZ  ->  y  e.  ( -u A ... A
) ) )
163162, 14impbid1 142 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( y  e.  ZZ  <->  y  e.  (
-u A ... A
) ) )
164163r19.29an 2639 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  z  e.  ZZ )  /\  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( y  e.  ZZ  <->  y  e.  ( -u A ... A ) ) )
165164rexlimdva2 2617 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( y  e.  ZZ  <->  y  e.  (
-u A ... A
) ) ) )
166165pm5.32rd 451 . . . . . . 7  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  <->  ( y  e.  ( -u A ... A )  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
167166rexbidv2 2500 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. y  e.  ( -u A ... A ) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) )
168167dcbid 839 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
(DECID 
E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <-> DECID  E. y  e.  (
-u A ... A
) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
169124, 168mpbird 167 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1701, 2, 169exfzdc 10333 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1711ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u A  e.  ZZ )
1722ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  e.  ZZ )
173 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
174173zred 9465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
175172zred 9465 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  e.  RR )
176174renegcld 8423 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  RR )
177174resqcld 10808 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  RR )
178173znegcld 9467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
179 zzlesq 10817 . . . . . . . . . . . . . . . 16  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
180178, 179syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( -u x ^
2 ) )
181173zcnd 9466 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  CC )
182 sqneg 10707 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
183181, 182syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
184180, 183breqtrd 4060 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( x ^ 2 ) )
18512adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
18616ad5antlr 497 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
187185, 186nn0addcld 9323 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
188187nn0red 9320 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  RR )
18921ad4antlr 495 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
19025ad3antlr 493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
191189, 190nn0addcld 9323 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
192187, 191nn0addcld 9323 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
193192nn0red 9320 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
194 nn0addge1 9312 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x ^ 2 )  e.  RR  /\  ( y ^ 2 )  e.  NN0 )  ->  ( x ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
195177, 186, 194syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
196188, 191, 151syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
197177, 188, 193, 195, 196letrd 8167 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
198 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
199197, 198breqtrrd 4062 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  A )
200176, 177, 175, 184, 199letrd 8167 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  A )
201174, 175, 200lenegcon1d 8571 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u A  <_  x )
202 zzlesq 10817 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
203202adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  <_  ( x ^ 2 ) )
204174, 177, 175, 203, 199letrd 8167 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  <_  A )
205171, 172, 173, 201, 204elfzd 10108 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  ( -u A ... A ) )
206205ex 115 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  ->  x  e.  ( -u A ... A ) ) )
207206, 10impbid1 142 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
208207r19.29an 2639 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
209208r19.29an 2639 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
210209rexlimdva2 2617 . . . . . 6  |-  ( A  e.  NN0  ->  ( E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) ) )
211210pm5.32rd 451 . . . . 5  |-  ( A  e.  NN0  ->  ( ( x  e.  ZZ  /\  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  <->  ( x  e.  ( -u A ... A )  /\  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
212211rexbidv2 2500 . . . 4  |-  ( A  e.  NN0  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) )
213212dcbid 839 . . 3  |-  ( A  e.  NN0  ->  (DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <-> DECID  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
214170, 213mpbird 167 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
215 eqeq1 2203 . . . . . 6  |-  ( n  =  A  ->  (
n  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
2162152rexbidv 2522 . . . . 5  |-  ( n  =  A  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
2172162rexbidv 2522 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
218 4sqlem11.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
219217, 218elab2g 2911 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
220219dcbid 839 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
221214, 220mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2167   {cab 2182   E.wrex 2476   class class class wbr 4034  (class class class)co 5925   CCcc 7894   RRcr 7895    + caddc 7899    <_ cle 8079   -ucneg 8215   2c2 9058   NN0cn0 9266   ZZcz 9343   ...cfz 10100   ^cexp 10647
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-fzo 10235  df-seqfrec 10557  df-exp 10648
This theorem is referenced by:  4sqlem13m  12597  4sqlem14  12598  4sqlem17  12601  4sqlem18  12602
  Copyright terms: Public domain W3C validator