ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemsdc Unicode version

Theorem 4sqlemsdc 12538
Description: Lemma for 4sq 12548. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular  A) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12536 and 4sqexercise2 12537 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

Hypothesis
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlemsdc  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, w, x, y, z
Allowed substitution hints:    S( x, y, z, w, n)

Proof of Theorem 4sqlemsdc
StepHypRef Expression
1 nn0negz 9351 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9337 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
31adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
42adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
53adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  -u A  e.  ZZ )
64adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  A  e.  ZZ )
75adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
86adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
98adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
10 elfzelz 10091 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
1110ad4antlr 495 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  x  e.  ZZ )
12 zsqcl2 10688 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1311, 12syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( x ^ 2 )  e.  NN0 )
14 elfzelz 10091 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( -u A ... A )  ->  y  e.  ZZ )
1514ad3antlr 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
y  e.  ZZ )
16 zsqcl2 10688 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( y ^ 2 )  e.  NN0 )
1813, 17nn0addcld 9297 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
19 elfzelz 10091 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( -u A ... A )  ->  z  e.  ZZ )
2019ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
z  e.  ZZ )
21 zsqcl2 10688 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  NN0 )
2220, 21syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( z ^ 2 )  e.  NN0 )
23 elfzelz 10091 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( -u A ... A )  ->  w  e.  ZZ )
2423adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  w  e.  ZZ )
25 zsqcl2 10688 . . . . . . . . . . . . . . 15  |-  ( w  e.  ZZ  ->  (
w ^ 2 )  e.  NN0 )
2624, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( w ^ 2 )  e.  NN0 )
2722, 26nn0addcld 9297 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( z ^
2 )  +  ( w ^ 2 ) )  e.  NN0 )
2818, 27nn0addcld 9297 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  NN0 )
2928nn0zd 9437 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  ZZ )
30 zdceq 9392 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  ZZ )  -> DECID 
A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
319, 29, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> DECID  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
327, 8, 31exfzdc 10307 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> DECID  E. w  e.  ( -u A ... A ) A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
331ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u A  e.  ZZ )
342ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  e.  ZZ )
35 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  ZZ )
3635zred 9439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  RR )
3734zred 9439 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  e.  RR )
3836renegcld 8399 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  e.  RR )
3936resqcld 10770 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  e.  RR )
4035znegcld 9441 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  e.  ZZ )
41 zzlesq 10779 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u w  e.  ZZ  ->  -u w  <_  ( -u w ^ 2 ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  ( -u w ^ 2 ) )
4335zcnd 9440 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  CC )
44 sqneg 10669 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  CC  ->  ( -u w ^ 2 )  =  ( w ^
2 ) )
4543, 44syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( -u w ^ 2 )  =  ( w ^ 2 ) )
4642, 45breqtrd 4055 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  (
w ^ 2 ) )
4719ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  z  e.  ZZ )
4847, 21syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( z ^
2 )  e.  NN0 )
4925adantl 277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  e.  NN0 )
5048, 49nn0addcld 9297 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
5150nn0red 9294 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  e.  RR )
5210ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  x  e.  ZZ )
5352, 12syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( x ^
2 )  e.  NN0 )
5414ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  y  e.  ZZ )
5554, 16syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( y ^
2 )  e.  NN0 )
5653, 55nn0addcld 9297 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
5756, 50nn0addcld 9297 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  e.  NN0 )
5857nn0red 9294 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  e.  RR )
59 nn0addge2 9287 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w ^ 2 )  e.  RR  /\  ( z ^ 2 )  e.  NN0 )  ->  ( w ^ 2 )  <_  ( (
z ^ 2 )  +  ( w ^
2 ) ) )
6039, 48, 59syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  (
( z ^ 2 )  +  ( w ^ 2 ) ) )
61 nn0addge2 9287 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z ^
2 )  +  ( w ^ 2 ) )  e.  RR  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )  ->  ( ( z ^
2 )  +  ( w ^ 2 ) )  <_  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
6251, 56, 61syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  <_  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
6339, 51, 58, 60, 62letrd 8143 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
64 simplr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
6563, 64breqtrrd 4057 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  A
)
6638, 39, 37, 46, 65letrd 8143 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  A
)
6736, 37, 66lenegcon1d 8546 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u A  <_  w
)
68 zzlesq 10779 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ZZ  ->  w  <_  ( w ^ 2 ) )
6968adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  <_  (
w ^ 2 ) )
7036, 39, 37, 69, 65letrd 8143 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  <_  A
)
7133, 34, 35, 67, 70elfzd 10082 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  (
-u A ... A
) )
7271ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  ->  ( w  e.  ZZ  ->  w  e.  ( -u A ... A
) ) )
7372, 23impbid1 142 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  ->  ( w  e.  ZZ  <->  w  e.  ( -u A ... A ) ) )
7473ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( w  e.  ZZ  <->  w  e.  ( -u A ... A ) ) ) )
7574pm5.32rd 451 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( ( w  e.  ZZ  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  <->  ( w  e.  ( -u A ... A )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) ) )
7675rexbidv2 2497 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. w  e.  ( -u A ... A ) A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
7776dcbid 839 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
(DECID 
E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <-> DECID  E. w  e.  (
-u A ... A
) A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
7832, 77mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> DECID  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
795, 6, 78exfzdc 10307 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  E. z  e.  (
-u A ... A
) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
801ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u A  e.  ZZ )
812ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  e.  ZZ )
82 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
8382zred 9439 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  RR )
8481zred 9439 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  e.  RR )
8583renegcld 8399 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  e.  RR )
8683resqcld 10770 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  e.  RR )
8782znegcld 9441 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  e.  ZZ )
88 zzlesq 10779 . . . . . . . . . . . . . . . . . 18  |-  ( -u z  e.  ZZ  ->  -u z  <_  ( -u z ^ 2 ) )
8987, 88syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  ( -u z ^
2 ) )
9082zcnd 9440 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  CC )
91 sqneg 10669 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  CC  ->  ( -u z ^ 2 )  =  ( z ^
2 ) )
9290, 91syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  ( -u z ^ 2 )  =  ( z ^
2 ) )
9389, 92breqtrd 4055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  ( z ^ 2 ) )
9421adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
9525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
9694, 95nn0addcld 9297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
9796nn0red 9294 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  RR )
9810ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  x  e.  ZZ )
9998, 12syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
10014ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  y  e.  ZZ )
101100, 16syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
10299, 101nn0addcld 9297 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
103102, 96nn0addcld 9297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
104103nn0red 9294 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
105 nn0addge1 9286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z ^ 2 )  e.  RR  /\  ( w ^ 2 )  e.  NN0 )  ->  ( z ^ 2 )  <_  ( (
z ^ 2 )  +  ( w ^
2 ) ) )
10686, 95, 105syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )
10797, 102, 61syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
10886, 97, 104, 106, 107letrd 8143 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
109 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
110108, 109breqtrrd 4057 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  A )
11185, 86, 84, 93, 110letrd 8143 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  A )
11283, 84, 111lenegcon1d 8546 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u A  <_  z )
113 zzlesq 10779 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ZZ  ->  z  <_  ( z ^ 2 ) )
114113adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  <_  ( z ^ 2 ) )
11583, 86, 84, 114, 110letrd 8143 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  <_  A )
11680, 81, 82, 112, 115elfzd 10082 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  ( -u A ... A ) )
117116ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( z  e.  ZZ  ->  z  e.  ( -u A ... A
) ) )
118117, 19impbid1 142 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( z  e.  ZZ  <->  z  e.  (
-u A ... A
) ) )
119118rexlimdva2 2614 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  ( E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  -> 
( z  e.  ZZ  <->  z  e.  ( -u A ... A ) ) ) )
120119pm5.32rd 451 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
( z  e.  ZZ  /\ 
E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  <-> 
( z  e.  (
-u A ... A
)  /\  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
121120rexbidv2 2497 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ( -u A ... A ) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
122121dcbid 839 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (DECID  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <-> DECID  E. z  e.  ( -u A ... A ) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
12379, 122mpbird 167 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
1243, 4, 123exfzdc 10307 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ( -u A ... A ) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1251ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u A  e.  ZZ )
1262ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  e.  ZZ )
127 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  ZZ )
128127zred 9439 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  RR )
129126zred 9439 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  e.  RR )
130128renegcld 8399 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  e.  RR )
131128resqcld 10770 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  e.  RR )
132127znegcld 9441 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  e.  ZZ )
133 zzlesq 10779 . . . . . . . . . . . . . . . . 17  |-  ( -u y  e.  ZZ  ->  -u y  <_  ( -u y ^ 2 ) )
134132, 133syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  ( -u y ^
2 ) )
135127zcnd 9440 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  CC )
136 sqneg 10669 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
137135, 136syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
138134, 137breqtrd 4055 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  ( y ^ 2 ) )
13910ad5antlr 497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  x  e.  ZZ )
140139, 12syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
14116adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
142140, 141nn0addcld 9297 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
143142nn0red 9294 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  RR )
14421ad4antlr 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
14525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
146144, 145nn0addcld 9297 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
147142, 146nn0addcld 9297 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
148147nn0red 9294 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
149 nn0addge2 9287 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ^ 2 )  e.  RR  /\  ( x ^ 2 )  e.  NN0 )  ->  ( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
150131, 140, 149syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
151 nn0addge1 9286 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  RR  /\  ( ( z ^
2 )  +  ( w ^ 2 ) )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
152143, 146, 151syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
153131, 143, 148, 150, 152letrd 8143 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
154 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
155153, 154breqtrrd 4057 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  A )
156130, 131, 129, 138, 155letrd 8143 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  A )
157128, 129, 156lenegcon1d 8546 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u A  <_  y )
158 zzlesq 10779 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  y  <_  ( y ^ 2 ) )
159158adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  <_  ( y ^ 2 ) )
160128, 131, 129, 159, 155letrd 8143 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  <_  A )
161125, 126, 127, 157, 160elfzd 10082 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  ( -u A ... A ) )
162161ex 115 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( y  e.  ZZ  ->  y  e.  ( -u A ... A
) ) )
163162, 14impbid1 142 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( y  e.  ZZ  <->  y  e.  (
-u A ... A
) ) )
164163r19.29an 2636 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  z  e.  ZZ )  /\  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( y  e.  ZZ  <->  y  e.  ( -u A ... A ) ) )
165164rexlimdva2 2614 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( y  e.  ZZ  <->  y  e.  (
-u A ... A
) ) ) )
166165pm5.32rd 451 . . . . . . 7  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  <->  ( y  e.  ( -u A ... A )  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
167166rexbidv2 2497 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. y  e.  ( -u A ... A ) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) )
168167dcbid 839 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
(DECID 
E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <-> DECID  E. y  e.  (
-u A ... A
) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
169124, 168mpbird 167 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1701, 2, 169exfzdc 10307 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1711ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u A  e.  ZZ )
1722ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  e.  ZZ )
173 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
174173zred 9439 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
175172zred 9439 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  e.  RR )
176174renegcld 8399 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  RR )
177174resqcld 10770 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  RR )
178173znegcld 9441 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
179 zzlesq 10779 . . . . . . . . . . . . . . . 16  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
180178, 179syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( -u x ^
2 ) )
181173zcnd 9440 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  CC )
182 sqneg 10669 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
183181, 182syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
184180, 183breqtrd 4055 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( x ^ 2 ) )
18512adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
18616ad5antlr 497 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
187185, 186nn0addcld 9297 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
188187nn0red 9294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  RR )
18921ad4antlr 495 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
19025ad3antlr 493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
191189, 190nn0addcld 9297 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
192187, 191nn0addcld 9297 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
193192nn0red 9294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
194 nn0addge1 9286 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x ^ 2 )  e.  RR  /\  ( y ^ 2 )  e.  NN0 )  ->  ( x ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
195177, 186, 194syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
196188, 191, 151syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
197177, 188, 193, 195, 196letrd 8143 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
198 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
199197, 198breqtrrd 4057 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  A )
200176, 177, 175, 184, 199letrd 8143 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  A )
201174, 175, 200lenegcon1d 8546 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u A  <_  x )
202 zzlesq 10779 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
203202adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  <_  ( x ^ 2 ) )
204174, 177, 175, 203, 199letrd 8143 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  <_  A )
205171, 172, 173, 201, 204elfzd 10082 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  ( -u A ... A ) )
206205ex 115 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  ->  x  e.  ( -u A ... A ) ) )
207206, 10impbid1 142 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
208207r19.29an 2636 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
209208r19.29an 2636 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
210209rexlimdva2 2614 . . . . . 6  |-  ( A  e.  NN0  ->  ( E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) ) )
211210pm5.32rd 451 . . . . 5  |-  ( A  e.  NN0  ->  ( ( x  e.  ZZ  /\  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  <->  ( x  e.  ( -u A ... A )  /\  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
212211rexbidv2 2497 . . . 4  |-  ( A  e.  NN0  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) )
213212dcbid 839 . . 3  |-  ( A  e.  NN0  ->  (DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <-> DECID  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
214170, 213mpbird 167 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
215 eqeq1 2200 . . . . . 6  |-  ( n  =  A  ->  (
n  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
2162152rexbidv 2519 . . . . 5  |-  ( n  =  A  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
2172162rexbidv 2519 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
218 4sqlem11.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
219217, 218elab2g 2907 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
220219dcbid 839 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
221214, 220mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871    + caddc 7875    <_ cle 8055   -ucneg 8191   2c2 9033   NN0cn0 9240   ZZcz 9317   ...cfz 10074   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610
This theorem is referenced by:  4sqlem13m  12541  4sqlem14  12542  4sqlem17  12545  4sqlem18  12546
  Copyright terms: Public domain W3C validator