ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqlemsdc Unicode version

Theorem 4sqlemsdc 12838
Description: Lemma for 4sq 12848. The property of being the sum of four squares is decidable.

The proof involves showing that (for a particular  A) there are only a finite number of possible ways that it could be the sum of four squares, so checking each of those possibilities in turn decides whether the number is the sum of four squares. If this proof is hard to follow, especially because of its length, the simplified versions at 4sqexercise1 12836 and 4sqexercise2 12837 may help clarify, as they are using very much the same techniques on simplified versions of this lemma. (Contributed by Jim Kingdon, 25-May-2025.)

Hypothesis
Ref Expression
4sqlem11.1  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
Assertion
Ref Expression
4sqlemsdc  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, w, x, y, z
Allowed substitution hints:    S( x, y, z, w, n)

Proof of Theorem 4sqlemsdc
StepHypRef Expression
1 nn0negz 9441 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9427 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
31adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
42adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
53adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  -u A  e.  ZZ )
64adantr 276 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  A  e.  ZZ )
75adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
86adantr 276 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
98adantr 276 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
10 elfzelz 10182 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
1110ad4antlr 495 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  x  e.  ZZ )
12 zsqcl2 10799 . . . . . . . . . . . . . . 15  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1311, 12syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( x ^ 2 )  e.  NN0 )
14 elfzelz 10182 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ( -u A ... A )  ->  y  e.  ZZ )
1514ad3antlr 493 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
y  e.  ZZ )
16 zsqcl2 10799 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
1715, 16syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( y ^ 2 )  e.  NN0 )
1813, 17nn0addcld 9387 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )
19 elfzelz 10182 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( -u A ... A )  ->  z  e.  ZZ )
2019ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
z  e.  ZZ )
21 zsqcl2 10799 . . . . . . . . . . . . . . 15  |-  ( z  e.  ZZ  ->  (
z ^ 2 )  e.  NN0 )
2220, 21syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( z ^ 2 )  e.  NN0 )
23 elfzelz 10182 . . . . . . . . . . . . . . . 16  |-  ( w  e.  ( -u A ... A )  ->  w  e.  ZZ )
2423adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  ->  w  e.  ZZ )
25 zsqcl2 10799 . . . . . . . . . . . . . . 15  |-  ( w  e.  ZZ  ->  (
w ^ 2 )  e.  NN0 )
2624, 25syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( w ^ 2 )  e.  NN0 )
2722, 26nn0addcld 9387 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( z ^
2 )  +  ( w ^ 2 ) )  e.  NN0 )
2818, 27nn0addcld 9387 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  NN0 )
2928nn0zd 9528 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> 
( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  ZZ )
30 zdceq 9483 . . . . . . . . . . 11  |-  ( ( A  e.  ZZ  /\  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  e.  ZZ )  -> DECID 
A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
319, 29, 30syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  w  e.  ( -u A ... A ) )  -> DECID  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
327, 8, 31exfzdc 10406 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> DECID  E. w  e.  ( -u A ... A ) A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
331ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u A  e.  ZZ )
342ad5antr 496 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  e.  ZZ )
35 simpr 110 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  ZZ )
3635zred 9530 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  RR )
3734zred 9530 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  e.  RR )
3836renegcld 8487 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  e.  RR )
3936resqcld 10881 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  e.  RR )
4035znegcld 9532 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  e.  ZZ )
41 zzlesq 10890 . . . . . . . . . . . . . . . . . . . 20  |-  ( -u w  e.  ZZ  ->  -u w  <_  ( -u w ^ 2 ) )
4240, 41syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  ( -u w ^ 2 ) )
4335zcnd 9531 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  CC )
44 sqneg 10780 . . . . . . . . . . . . . . . . . . . 20  |-  ( w  e.  CC  ->  ( -u w ^ 2 )  =  ( w ^
2 ) )
4543, 44syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( -u w ^ 2 )  =  ( w ^ 2 ) )
4642, 45breqtrd 4085 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  (
w ^ 2 ) )
4719ad3antlr 493 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  z  e.  ZZ )
4847, 21syl 14 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( z ^
2 )  e.  NN0 )
4925adantl 277 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  e.  NN0 )
5048, 49nn0addcld 9387 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
5150nn0red 9384 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  e.  RR )
5210ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  x  e.  ZZ )
5352, 12syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( x ^
2 )  e.  NN0 )
5414ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  y  e.  ZZ )
5554, 16syl 14 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( y ^
2 )  e.  NN0 )
5653, 55nn0addcld 9387 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
5756, 50nn0addcld 9387 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  e.  NN0 )
5857nn0red 9384 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  e.  RR )
59 nn0addge2 9377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( w ^ 2 )  e.  RR  /\  ( z ^ 2 )  e.  NN0 )  ->  ( w ^ 2 )  <_  ( (
z ^ 2 )  +  ( w ^
2 ) ) )
6039, 48, 59syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  (
( z ^ 2 )  +  ( w ^ 2 ) ) )
61 nn0addge2 9377 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( z ^
2 )  +  ( w ^ 2 ) )  e.  RR  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  NN0 )  ->  ( ( z ^
2 )  +  ( w ^ 2 ) )  <_  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
6251, 56, 61syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( ( z ^ 2 )  +  ( w ^ 2 ) )  <_  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
6339, 51, 58, 60, 62letrd 8231 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
64 simplr 528 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
6563, 64breqtrrd 4087 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  ( w ^
2 )  <_  A
)
6638, 39, 37, 46, 65letrd 8231 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u w  <_  A
)
6736, 37, 66lenegcon1d 8635 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  -u A  <_  w
)
68 zzlesq 10890 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  ZZ  ->  w  <_  ( w ^ 2 ) )
6968adantl 277 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  <_  (
w ^ 2 ) )
7036, 39, 37, 69, 65letrd 8231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  <_  A
)
7133, 34, 35, 67, 70elfzd 10173 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  /\  w  e.  ZZ )  ->  w  e.  (
-u A ... A
) )
7271ex 115 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  ->  ( w  e.  ZZ  ->  w  e.  ( -u A ... A
) ) )
7372, 23impbid1 142 . . . . . . . . . . . . 13  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  /\  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  ->  ( w  e.  ZZ  <->  w  e.  ( -u A ... A ) ) )
7473ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( w  e.  ZZ  <->  w  e.  ( -u A ... A ) ) ) )
7574pm5.32rd 451 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( ( w  e.  ZZ  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  <->  ( w  e.  ( -u A ... A )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) ) )
7675rexbidv2 2511 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
( E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. w  e.  ( -u A ... A ) A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
7776dcbid 840 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> 
(DECID 
E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <-> DECID  E. w  e.  (
-u A ... A
) A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
7832, 77mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  y  e.  ( -u A ... A ) )  /\  z  e.  ( -u A ... A ) )  -> DECID  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
795, 6, 78exfzdc 10406 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  E. z  e.  (
-u A ... A
) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
801ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u A  e.  ZZ )
812ad5antr 496 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  e.  ZZ )
82 simpr 110 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  ZZ )
8382zred 9530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  RR )
8481zred 9530 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  e.  RR )
8583renegcld 8487 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  e.  RR )
8683resqcld 10881 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  e.  RR )
8782znegcld 9532 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  e.  ZZ )
88 zzlesq 10890 . . . . . . . . . . . . . . . . . 18  |-  ( -u z  e.  ZZ  ->  -u z  <_  ( -u z ^ 2 ) )
8987, 88syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  ( -u z ^
2 ) )
9082zcnd 9531 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  CC )
91 sqneg 10780 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  CC  ->  ( -u z ^ 2 )  =  ( z ^
2 ) )
9290, 91syl 14 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  ( -u z ^ 2 )  =  ( z ^
2 ) )
9389, 92breqtrd 4085 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  ( z ^ 2 ) )
9421adantl 277 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
9525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
9694, 95nn0addcld 9387 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
9796nn0red 9384 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  RR )
9810ad5antlr 497 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  x  e.  ZZ )
9998, 12syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
10014ad4antlr 495 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  y  e.  ZZ )
101100, 16syl 14 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
10299, 101nn0addcld 9387 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
103102, 96nn0addcld 9387 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
104103nn0red 9384 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
105 nn0addge1 9376 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z ^ 2 )  e.  RR  /\  ( w ^ 2 )  e.  NN0 )  ->  ( z ^ 2 )  <_  ( (
z ^ 2 )  +  ( w ^
2 ) ) )
10686, 95, 105syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )
10797, 102, 61syl2anc 411 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
10886, 97, 104, 106, 107letrd 8231 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
109 simplr 528 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
110108, 109breqtrrd 4087 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  (
z ^ 2 )  <_  A )
11185, 86, 84, 93, 110letrd 8231 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u z  <_  A )
11283, 84, 111lenegcon1d 8635 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  -u A  <_  z )
113 zzlesq 10890 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ZZ  ->  z  <_  ( z ^ 2 ) )
114113adantl 277 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  <_  ( z ^ 2 ) )
11583, 86, 84, 114, 110letrd 8231 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  <_  A )
11680, 81, 82, 112, 115elfzd 10173 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  z  e.  ZZ )  ->  z  e.  ( -u A ... A ) )
117116ex 115 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( z  e.  ZZ  ->  z  e.  ( -u A ... A
) ) )
118117, 19impbid1 142 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  ( -u A ... A ) )  /\  w  e.  ZZ )  /\  A  =  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( z  e.  ZZ  <->  z  e.  (
-u A ... A
) ) )
119118rexlimdva2 2628 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  ( E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  -> 
( z  e.  ZZ  <->  z  e.  ( -u A ... A ) ) ) )
120119pm5.32rd 451 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
( z  e.  ZZ  /\ 
E. w  e.  ZZ  A  =  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )  <-> 
( z  e.  (
-u A ... A
)  /\  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
121120rexbidv2 2511 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ( -u A ... A ) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
122121dcbid 840 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (DECID  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <-> DECID  E. z  e.  ( -u A ... A ) E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
12379, 122mpbird 167 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
1243, 4, 123exfzdc 10406 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ( -u A ... A ) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1251ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u A  e.  ZZ )
1262ad5antr 496 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  e.  ZZ )
127 simpr 110 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  ZZ )
128127zred 9530 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  RR )
129126zred 9530 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  e.  RR )
130128renegcld 8487 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  e.  RR )
131128resqcld 10881 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  e.  RR )
132127znegcld 9532 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  e.  ZZ )
133 zzlesq 10890 . . . . . . . . . . . . . . . . 17  |-  ( -u y  e.  ZZ  ->  -u y  <_  ( -u y ^ 2 ) )
134132, 133syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  ( -u y ^
2 ) )
135127zcnd 9531 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  CC )
136 sqneg 10780 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  CC  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
137135, 136syl 14 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
138134, 137breqtrd 4085 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  ( y ^ 2 ) )
13910ad5antlr 497 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  x  e.  ZZ )
140139, 12syl 14 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
14116adantl 277 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
142140, 141nn0addcld 9387 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
143142nn0red 9384 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  RR )
14421ad4antlr 495 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
14525ad3antlr 493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
146144, 145nn0addcld 9387 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
147142, 146nn0addcld 9387 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
148147nn0red 9384 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
149 nn0addge2 9377 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( y ^ 2 )  e.  RR  /\  ( x ^ 2 )  e.  NN0 )  ->  ( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
150131, 140, 149syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
151 nn0addge1 9376 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  RR  /\  ( ( z ^
2 )  +  ( w ^ 2 ) )  e.  NN0 )  ->  ( ( x ^
2 )  +  ( y ^ 2 ) )  <_  ( (
( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) )
152143, 146, 151syl2anc 411 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
153131, 143, 148, 150, 152letrd 8231 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
154 simplr 528 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
155153, 154breqtrrd 4087 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  (
y ^ 2 )  <_  A )
156130, 131, 129, 138, 155letrd 8231 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u y  <_  A )
157128, 129, 156lenegcon1d 8635 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  -u A  <_  y )
158 zzlesq 10890 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  y  <_  ( y ^ 2 ) )
159158adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  <_  ( y ^ 2 ) )
160128, 131, 129, 159, 155letrd 8231 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  <_  A )
161125, 126, 127, 157, 160elfzd 10173 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  y  e.  ZZ )  ->  y  e.  ( -u A ... A ) )
162161ex 115 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( y  e.  ZZ  ->  y  e.  ( -u A ... A
) ) )
163162, 14impbid1 142 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( y  e.  ZZ  <->  y  e.  (
-u A ... A
) ) )
164163r19.29an 2650 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  x  e.  ( -u A ... A
) )  /\  z  e.  ZZ )  /\  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( y  e.  ZZ  <->  y  e.  ( -u A ... A ) ) )
165164rexlimdva2 2628 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( y  e.  ZZ  <->  y  e.  (
-u A ... A
) ) ) )
166165pm5.32rd 451 . . . . . . 7  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  <->  ( y  e.  ( -u A ... A )  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
167166rexbidv2 2511 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. y  e.  ( -u A ... A ) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) )
168167dcbid 840 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
(DECID 
E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <-> DECID  E. y  e.  (
-u A ... A
) E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
169124, 168mpbird 167 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1701, 2, 169exfzdc 10406 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
1711ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u A  e.  ZZ )
1722ad5antr 496 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  e.  ZZ )
173 simpr 110 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
174173zred 9530 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
175172zred 9530 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  e.  RR )
176174renegcld 8487 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  RR )
177174resqcld 10881 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  RR )
178173znegcld 9532 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
179 zzlesq 10890 . . . . . . . . . . . . . . . 16  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
180178, 179syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( -u x ^
2 ) )
181173zcnd 9531 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  CC )
182 sqneg 10780 . . . . . . . . . . . . . . . 16  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
183181, 182syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
184180, 183breqtrd 4085 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( x ^ 2 ) )
18512adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  NN0 )
18616ad5antlr 497 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
187185, 186nn0addcld 9387 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  NN0 )
188187nn0red 9384 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  RR )
18921ad4antlr 495 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
z ^ 2 )  e.  NN0 )
19025ad3antlr 493 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
w ^ 2 )  e.  NN0 )
191189, 190nn0addcld 9387 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( z ^ 2 )  +  ( w ^ 2 ) )  e.  NN0 )
192187, 191nn0addcld 9387 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  NN0 )
193192nn0red 9384 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  e.  RR )
194 nn0addge1 9376 . . . . . . . . . . . . . . . . 17  |-  ( ( ( x ^ 2 )  e.  RR  /\  ( y ^ 2 )  e.  NN0 )  ->  ( x ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
195177, 186, 194syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
196188, 191, 151syl2anc 411 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
197177, 188, 193, 195, 196letrd 8231 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
198 simplr 528 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )
199197, 198breqtrrd 4087 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  A )
200176, 177, 175, 184, 199letrd 8231 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  A )
201174, 175, 200lenegcon1d 8635 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  -u A  <_  x )
202 zzlesq 10890 . . . . . . . . . . . . . 14  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
203202adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  <_  ( x ^ 2 ) )
204174, 177, 175, 203, 199letrd 8231 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  <_  A )
205171, 172, 173, 201, 204elfzd 10173 . . . . . . . . . . 11  |-  ( ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  /\  x  e.  ZZ )  ->  x  e.  ( -u A ... A ) )
206205ex 115 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  ->  x  e.  ( -u A ... A ) ) )
207206, 10impbid1 142 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  w  e.  ZZ )  /\  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
208207r19.29an 2650 . . . . . . . 8  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  z  e.  ZZ )  /\  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) )  -> 
( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
209208r19.29an 2650 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
210209rexlimdva2 2628 . . . . . 6  |-  ( A  e.  NN0  ->  ( E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) ) )
211210pm5.32rd 451 . . . . 5  |-  ( A  e.  NN0  ->  ( ( x  e.  ZZ  /\  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )  <->  ( x  e.  ( -u A ... A )  /\  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) ) )
212211rexbidv2 2511 . . . 4  |-  ( A  e.  NN0  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) ) ) )
213212dcbid 840 . . 3  |-  ( A  e.  NN0  ->  (DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <-> DECID  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
214170, 213mpbird 167 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) )
215 eqeq1 2214 . . . . . 6  |-  ( n  =  A  ->  (
n  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) )  <->  A  =  ( ( ( x ^ 2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^ 2 ) ) ) ) )
2162152rexbidv 2533 . . . . 5  |-  ( n  =  A  ->  ( E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^ 2 )  +  ( y ^
2 ) )  +  ( ( z ^
2 )  +  ( w ^ 2 ) ) )  <->  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
2172162rexbidv 2533 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
218 4sqlem11.1 . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  n  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) }
219217, 218elab2g 2927 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
220219dcbid 840 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  E. y  e.  ZZ  E. z  e.  ZZ  E. w  e.  ZZ  A  =  ( ( ( x ^
2 )  +  ( y ^ 2 ) )  +  ( ( z ^ 2 )  +  ( w ^
2 ) ) ) ) )
221214, 220mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2178   {cab 2193   E.wrex 2487   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959    + caddc 7963    <_ cle 8143   -ucneg 8279   2c2 9122   NN0cn0 9330   ZZcz 9407   ...cfz 10165   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  4sqlem13m  12841  4sqlem14  12842  4sqlem17  12845  4sqlem18  12846
  Copyright terms: Public domain W3C validator