ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 Unicode version

Theorem 4sqexercise2 12537
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12538. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) }
Assertion
Ref Expression
4sqexercise2  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, x, y
Allowed substitution hints:    S( x, y, n)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9351 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9337 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
31adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
42adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
54adantr 276 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  A  e.  ZZ )
6 elfzelz 10091 . . . . . . . . . 10  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
76ad2antlr 489 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  x  e.  ZZ )
8 zsqcl 10681 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
97, 8syl 14 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
x ^ 2 )  e.  ZZ )
10 elfzelz 10091 . . . . . . . . . 10  |-  ( y  e.  ( -u A ... A )  ->  y  e.  ZZ )
1110adantl 277 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  y  e.  ZZ )
12 zsqcl 10681 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
1311, 12syl 14 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
y ^ 2 )  e.  ZZ )
149, 13zaddcld 9443 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  ZZ )
15 zdceq 9392 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  ZZ )  -> DECID 
A  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
165, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  A  =  (
( x ^ 2 )  +  ( y ^ 2 ) ) )
173, 4, 16exfzdc 10307 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ( -u A ... A ) A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )
183adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u A  e.  ZZ )
194adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  A  e.  ZZ )
20 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  e.  ZZ )
2120zred 9439 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  e.  RR )
2219zred 9439 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  A  e.  RR )
2321renegcld 8399 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u y  e.  RR )
24 zsqcl2 10688 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
2520, 24syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  e.  NN0 )
2625nn0red 9294 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  e.  RR )
27 znegcl 9348 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
28 zzlesq 10779 . . . . . . . . . . . . . . . 16  |-  ( -u y  e.  ZZ  ->  -u y  <_  ( -u y ^ 2 ) )
2927, 28syl 14 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  -u y  <_  ( -u y ^
2 ) )
30 zcn 9322 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  CC )
31 sqneg 10669 . . . . . . . . . . . . . . . 16  |-  ( y  e.  CC  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
3230, 31syl 14 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
3329, 32breqtrd 4055 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  -u y  <_  ( y ^ 2 ) )
3420, 33syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u y  <_  ( y ^ 2 ) )
356ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  x  e.  ZZ )
36 zsqcl2 10688 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
3735, 36syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( x ^ 2 )  e.  NN0 )
38 nn0addge2 9287 . . . . . . . . . . . . . . 15  |-  ( ( ( y ^ 2 )  e.  RR  /\  ( x ^ 2 )  e.  NN0 )  ->  ( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
40 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
4139, 40breqtrrd 4057 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  <_  A )
4223, 26, 22, 34, 41letrd 8143 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u y  <_  A )
4321, 22, 42lenegcon1d 8546 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u A  <_  y )
44 zzlesq 10779 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  y  <_  ( y ^ 2 ) )
4520, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  <_  ( y ^ 2 ) )
4621, 26, 22, 45, 41letrd 8143 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  <_  A )
4718, 19, 20, 43, 46elfzd 10082 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  e.  ( -u A ... A ) )
4847, 40jca 306 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y  e.  (
-u A ... A
)  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
4948ex 115 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  (
y  e.  ( -u A ... A )  /\  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5010anim1i 340 . . . . . . . 8  |-  ( ( y  e.  ( -u A ... A )  /\  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )  ->  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
5149, 50impbid1 142 . . . . . . 7  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  <->  ( y  e.  ( -u A ... A )  /\  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )
5251rexbidv2 2497 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. y  e.  ( -u A ... A ) A  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
5352dcbid 839 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
(DECID 
E. y  e.  ZZ  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <-> DECID  E. y  e.  (
-u A ... A
) A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
5417, 53mpbird 167 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
551, 2, 54exfzdc 10307 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
561ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u A  e.  ZZ )
572ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  A  e.  ZZ )
58 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
5958zred 9439 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
6057zred 9439 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  A  e.  RR )
6159renegcld 8399 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  RR )
6259resqcld 10770 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  RR )
6358znegcld 9441 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
64 zzlesq 10779 . . . . . . . . . . . . . 14  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
6563, 64syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( -u x ^
2 ) )
6658zcnd 9440 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  CC )
67 sqneg 10669 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
6866, 67syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
6965, 68breqtrd 4055 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( x ^ 2 ) )
7024ad3antlr 493 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
71 nn0addge1 9286 . . . . . . . . . . . . . 14  |-  ( ( ( x ^ 2 )  e.  RR  /\  ( y ^ 2 )  e.  NN0 )  ->  ( x ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
73 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
7472, 73breqtrrd 4057 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  A )
7561, 62, 60, 69, 74letrd 8143 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  A )
7659, 60, 75lenegcon1d 8546 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u A  <_  x )
77 zzlesq 10779 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
7877adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  <_  ( x ^ 2 ) )
7959, 62, 60, 78, 74letrd 8143 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  <_  A )
8056, 57, 58, 76, 79elfzd 10082 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  ( -u A ... A ) )
8180ex 115 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  ( x  e.  ZZ  ->  x  e.  ( -u A ... A
) ) )
8281, 6impbid1 142 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
8382rexlimdva2 2614 . . . . . 6  |-  ( A  e.  NN0  ->  ( E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  (
x  e.  ZZ  <->  x  e.  ( -u A ... A
) ) ) )
8483pm5.32rd 451 . . . . 5  |-  ( A  e.  NN0  ->  ( ( x  e.  ZZ  /\  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( x  e.  ( -u A ... A )  /\  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )
8584rexbidv2 2497 . . . 4  |-  ( A  e.  NN0  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
8685dcbid 839 . . 3  |-  ( A  e.  NN0  ->  (DECID  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <-> DECID  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
8755, 86mpbird 167 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
88 eqeq1 2200 . . . . 5  |-  ( n  =  A  ->  (
n  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
89882rexbidv 2519 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
90 4sqexercise2.s . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) }
9189, 90elab2g 2907 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9291dcbid 839 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9387, 92mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 835    = wceq 1364    e. wcel 2164   {cab 2179   E.wrex 2473   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871    + caddc 7875    <_ cle 8055   -ucneg 8191   2c2 9033   NN0cn0 9240   ZZcz 9317   ...cfz 10074   ^cexp 10609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-n0 9241  df-z 9318  df-uz 9593  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator