ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise2 Unicode version

Theorem 4sqexercise2 12797
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12798. (Contributed by Jim Kingdon, 30-May-2025.)
Hypothesis
Ref Expression
4sqexercise2.s  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) }
Assertion
Ref Expression
4sqexercise2  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, x, y
Allowed substitution hints:    S( x, y, n)

Proof of Theorem 4sqexercise2
StepHypRef Expression
1 nn0negz 9426 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9412 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
31adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  -u A  e.  ZZ )
42adantr 276 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  A  e.  ZZ )
54adantr 276 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  A  e.  ZZ )
6 elfzelz 10167 . . . . . . . . . 10  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
76ad2antlr 489 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  x  e.  ZZ )
8 zsqcl 10777 . . . . . . . . 9  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
97, 8syl 14 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
x ^ 2 )  e.  ZZ )
10 elfzelz 10167 . . . . . . . . . 10  |-  ( y  e.  ( -u A ... A )  ->  y  e.  ZZ )
1110adantl 277 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  y  e.  ZZ )
12 zsqcl 10777 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  ZZ )
1311, 12syl 14 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
y ^ 2 )  e.  ZZ )
149, 13zaddcld 9519 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  ->  (
( x ^ 2 )  +  ( y ^ 2 ) )  e.  ZZ )
15 zdceq 9468 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  ( ( x ^
2 )  +  ( y ^ 2 ) )  e.  ZZ )  -> DECID 
A  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) )
165, 14, 15syl2anc 411 . . . . . 6  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  y  e.  (
-u A ... A
) )  -> DECID  A  =  (
( x ^ 2 )  +  ( y ^ 2 ) ) )
173, 4, 16exfzdc 10391 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ( -u A ... A ) A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )
183adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u A  e.  ZZ )
194adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  A  e.  ZZ )
20 simprl 529 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  e.  ZZ )
2120zred 9515 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  e.  RR )
2219zred 9515 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  A  e.  RR )
2321renegcld 8472 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u y  e.  RR )
24 zsqcl2 10784 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  (
y ^ 2 )  e.  NN0 )
2520, 24syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  e.  NN0 )
2625nn0red 9369 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  e.  RR )
27 znegcl 9423 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  -u y  e.  ZZ )
28 zzlesq 10875 . . . . . . . . . . . . . . . 16  |-  ( -u y  e.  ZZ  ->  -u y  <_  ( -u y ^ 2 ) )
2927, 28syl 14 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  -u y  <_  ( -u y ^
2 ) )
30 zcn 9397 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  CC )
31 sqneg 10765 . . . . . . . . . . . . . . . 16  |-  ( y  e.  CC  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
3230, 31syl 14 . . . . . . . . . . . . . . 15  |-  ( y  e.  ZZ  ->  ( -u y ^ 2 )  =  ( y ^
2 ) )
3329, 32breqtrd 4077 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  -u y  <_  ( y ^ 2 ) )
3420, 33syl 14 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u y  <_  ( y ^ 2 ) )
356ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  x  e.  ZZ )
36 zsqcl2 10784 . . . . . . . . . . . . . . . 16  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
3735, 36syl 14 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( x ^ 2 )  e.  NN0 )
38 nn0addge2 9362 . . . . . . . . . . . . . . 15  |-  ( ( ( y ^ 2 )  e.  RR  /\  ( x ^ 2 )  e.  NN0 )  ->  ( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
3926, 37, 38syl2anc 411 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
40 simprr 531 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
4139, 40breqtrrd 4079 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y ^ 2 )  <_  A )
4223, 26, 22, 34, 41letrd 8216 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u y  <_  A )
4321, 22, 42lenegcon1d 8620 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  ->  -u A  <_  y )
44 zzlesq 10875 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  y  <_  ( y ^ 2 ) )
4520, 44syl 14 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  <_  ( y ^ 2 ) )
4621, 26, 22, 45, 41letrd 8216 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  <_  A )
4718, 19, 20, 43, 46elfzd 10158 . . . . . . . . . 10  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
y  e.  ( -u A ... A ) )
4847, 40jca 306 . . . . . . . . 9  |-  ( ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  /\  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )  -> 
( y  e.  (
-u A ... A
)  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
4948ex 115 . . . . . . . 8  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  ->  (
y  e.  ( -u A ... A )  /\  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) ) ) )
5010anim1i 340 . . . . . . . 8  |-  ( ( y  e.  ( -u A ... A )  /\  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) ) )  ->  ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
5149, 50impbid1 142 . . . . . . 7  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( ( y  e.  ZZ  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  <->  ( y  e.  ( -u A ... A )  /\  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )
5251rexbidv2 2510 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. y  e.  ( -u A ... A ) A  =  ( ( x ^ 2 )  +  ( y ^
2 ) ) ) )
5352dcbid 840 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
(DECID 
E. y  e.  ZZ  A  =  ( (
x ^ 2 )  +  ( y ^
2 ) )  <-> DECID  E. y  e.  (
-u A ... A
) A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
5417, 53mpbird 167 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
551, 2, 54exfzdc 10391 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
561ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u A  e.  ZZ )
572ad3antrrr 492 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  A  e.  ZZ )
58 simpr 110 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  ZZ )
5958zred 9515 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  RR )
6057zred 9515 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  A  e.  RR )
6159renegcld 8472 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  RR )
6259resqcld 10866 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  e.  RR )
6358znegcld 9517 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  e.  ZZ )
64 zzlesq 10875 . . . . . . . . . . . . . 14  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
6563, 64syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( -u x ^
2 ) )
6658zcnd 9516 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  CC )
67 sqneg 10765 . . . . . . . . . . . . . 14  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
6866, 67syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
6965, 68breqtrd 4077 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  ( x ^ 2 ) )
7024ad3antlr 493 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
y ^ 2 )  e.  NN0 )
71 nn0addge1 9361 . . . . . . . . . . . . . 14  |-  ( ( ( x ^ 2 )  e.  RR  /\  ( y ^ 2 )  e.  NN0 )  ->  ( x ^ 2 )  <_  ( (
x ^ 2 )  +  ( y ^
2 ) ) )
7262, 70, 71syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
73 simplr 528 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
7472, 73breqtrrd 4079 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  (
x ^ 2 )  <_  A )
7561, 62, 60, 69, 74letrd 8216 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u x  <_  A )
7659, 60, 75lenegcon1d 8620 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  -u A  <_  x )
77 zzlesq 10875 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
7877adantl 277 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  <_  ( x ^ 2 ) )
7959, 62, 60, 78, 74letrd 8216 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  <_  A )
8056, 57, 58, 76, 79elfzd 10158 . . . . . . . . 9  |-  ( ( ( ( A  e. 
NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) )  /\  x  e.  ZZ )  ->  x  e.  ( -u A ... A ) )
8180ex 115 . . . . . . . 8  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  ( x  e.  ZZ  ->  x  e.  ( -u A ... A
) ) )
8281, 6impbid1 142 . . . . . . 7  |-  ( ( ( A  e.  NN0  /\  y  e.  ZZ )  /\  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  ->  ( x  e.  ZZ  <->  x  e.  ( -u A ... A ) ) )
8382rexlimdva2 2627 . . . . . 6  |-  ( A  e.  NN0  ->  ( E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  ->  (
x  e.  ZZ  <->  x  e.  ( -u A ... A
) ) ) )
8483pm5.32rd 451 . . . . 5  |-  ( A  e.  NN0  ->  ( ( x  e.  ZZ  /\  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )  <->  ( x  e.  ( -u A ... A )  /\  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) ) )
8584rexbidv2 2510 . . . 4  |-  ( A  e.  NN0  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
8685dcbid 840 . . 3  |-  ( A  e.  NN0  ->  (DECID  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <-> DECID  E. x  e.  ( -u A ... A ) E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
8755, 86mpbird 167 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) )
88 eqeq1 2213 . . . . 5  |-  ( n  =  A  ->  (
n  =  ( ( x ^ 2 )  +  ( y ^
2 ) )  <->  A  =  ( ( x ^
2 )  +  ( y ^ 2 ) ) ) )
89882rexbidv 2532 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^ 2 )  +  ( y ^ 2 ) )  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
90 4sqexercise2.s . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  E. y  e.  ZZ  n  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) }
9189, 90elab2g 2924 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9291dcbid 840 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  E. y  e.  ZZ  A  =  ( ( x ^ 2 )  +  ( y ^ 2 ) ) ) )
9387, 92mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105  DECID wdc 836    = wceq 1373    e. wcel 2177   {cab 2192   E.wrex 2486   class class class wbr 4051  (class class class)co 5957   CCcc 7943   RRcr 7944    + caddc 7948    <_ cle 8128   -ucneg 8264   2c2 9107   NN0cn0 9315   ZZcz 9392   ...cfz 10150   ^cexp 10705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator