ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm Unicode version

Theorem gsumfzfsumlemm 14559
Description: Lemma for gsumfzfsum 14560. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumfzfsumlemm.b  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )
Assertion
Ref Expression
gsumfzfsumlemm  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B )
Distinct variable groups:    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem gsumfzfsumlemm
Dummy variables  j  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10236 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 oveq2 6015 . . . . . . 7  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
54mpteq1d 4169 . . . . . 6  |-  ( w  =  M  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... M )  |->  B ) )
65oveq2d 6023 . . . . 5  |-  ( w  =  M  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) ) )
74sumeq1d 11885 . . . . 5  |-  ( w  =  M  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... M ) B )
86, 7eqeq12d 2244 . . . 4  |-  ( w  =  M  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) )
98imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) ) )
10 oveq2 6015 . . . . . . 7  |-  ( w  =  j  ->  ( M ... w )  =  ( M ... j
) )
1110mpteq1d 4169 . . . . . 6  |-  ( w  =  j  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... j )  |->  B ) )
1211oveq2d 6023 . . . . 5  |-  ( w  =  j  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) )
1310sumeq1d 11885 . . . . 5  |-  ( w  =  j  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... j ) B )
1412, 13eqeq12d 2244 . . . 4  |-  ( w  =  j  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B ) )
1514imbi2d 230 . . 3  |-  ( w  =  j  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B ) ) )
16 oveq2 6015 . . . . . . 7  |-  ( w  =  ( j  +  1 )  ->  ( M ... w )  =  ( M ... (
j  +  1 ) ) )
1716mpteq1d 4169 . . . . . 6  |-  ( w  =  ( j  +  1 )  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... ( j  +  1 ) )  |->  B ) )
1817oveq2d 6023 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) ) )
1916sumeq1d 11885 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... ( j  +  1 ) ) B )
2018, 19eqeq12d 2244 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) )
2120imbi2d 230 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
22 oveq2 6015 . . . . . . 7  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
2322mpteq1d 4169 . . . . . 6  |-  ( w  =  N  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... N )  |->  B ) )
2423oveq2d 6023 . . . . 5  |-  ( w  =  N  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) ) )
2522sumeq1d 11885 . . . . 5  |-  ( w  =  N  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... N ) B )
2624, 25eqeq12d 2244 . . . 4  |-  ( w  =  N  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) )
2726imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) ) )
28 cnfldbas 14532 . . . . . 6  |-  CC  =  ( Base ` fld )
29 cnring 14542 . . . . . . 7  |-fld  e.  Ring
30 ringmnd 13977 . . . . . . 7  |-  (fld  e.  Ring  ->fld  e.  Mnd )
3129, 30mp1i 10 . . . . . 6  |-  ( ph  ->fld  e. 
Mnd )
32 eluzel2 9735 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
331, 32syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
34 eluzfz1 10235 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
351, 34syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
36 gsumfzfsumlemm.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )
3736ralrimiva 2603 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) B  e.  CC )
38 nfcsb1v 3157 . . . . . . . . 9  |-  F/_ k [_ M  /  k ]_ B
3938nfel1 2383 . . . . . . . 8  |-  F/ k
[_ M  /  k ]_ B  e.  CC
40 csbeq1a 3133 . . . . . . . . 9  |-  ( k  =  M  ->  B  =  [_ M  /  k ]_ B )
4140eleq1d 2298 . . . . . . . 8  |-  ( k  =  M  ->  ( B  e.  CC  <->  [_ M  / 
k ]_ B  e.  CC ) )
4239, 41rspc 2901 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) B  e.  CC  ->  [_ M  /  k ]_ B  e.  CC ) )
4335, 37, 42sylc 62 . . . . . 6  |-  ( ph  ->  [_ M  /  k ]_ B  e.  CC )
4440adantl 277 . . . . . 6  |-  ( (
ph  /\  k  =  M )  ->  B  =  [_ M  /  k ]_ B )
45 nfv 1574 . . . . . 6  |-  F/ k
ph
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13890 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  { M }  |->  B ) )  =  [_ M  /  k ]_ B
)
47 fzsn 10270 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
4833, 47syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... M
)  =  { M } )
4948mpteq1d 4169 . . . . . 6  |-  ( ph  ->  ( k  e.  ( M ... M ) 
|->  B )  =  ( k  e.  { M }  |->  B ) )
5049oveq2d 6023 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  { M }  |->  B ) ) )
5147sumeq1d 11885 . . . . . . 7  |-  ( M  e.  ZZ  ->  sum_ k  e.  ( M ... M
) B  =  sum_ k  e.  { M } B )
5233, 51syl 14 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) B  =  sum_ k  e.  { M } B
)
53 sumsns 11934 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  { M } B  =  [_ M  /  k ]_ B
)
5433, 43, 53syl2anc 411 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M } B  =  [_ M  /  k ]_ B
)
5552, 54eqtrd 2262 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) B  =  [_ M  /  k ]_ B
)
5646, 50, 553eqtr4d 2272 . . . 4  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B )
5756a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) )
58 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )
5958oveq1d 6022 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (
(fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ ( j  +  1 )  /  k ]_ B )  =  (
sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
60 mpocnfldadd 14533 . . . . . . . . . 10  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  =  ( +g  ` fld )
6129a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->fld 
e.  Ring )
6233adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  M  e.  ZZ )
63 elfzouz 10355 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
6463adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  (
ZZ>= `  M ) )
65 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  ph )
6665, 33syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  M  e.  ZZ )
67 elfzoel2 10350 . . . . . . . . . . . . . 14  |-  ( j  e.  ( M..^ N
)  ->  N  e.  ZZ )
6867ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  N  e.  ZZ )
69 elfzelz 10229 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  k  e.  ZZ )
7069adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  ZZ )
71 elfzle1 10231 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  M  <_  k )
7271adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  M  <_  k )
7370zred 9577 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  RR )
74 elfzoelz 10351 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ZZ )
7574ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  j  e.  ZZ )
7675peano2zd 9580 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  ZZ )
7776zred 9577 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  RR )
7868zred 9577 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  N  e.  RR )
79 elfzle2 10232 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  k  <_  ( j  +  1 ) )
8079adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  <_  ( j  +  1 ) )
81 fzofzp1 10441 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
8281ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  ( M ... N ) )
83 elfzle2 10232 . . . . . . . . . . . . . . 15  |-  ( ( j  +  1 )  e.  ( M ... N )  ->  (
j  +  1 )  <_  N )
8482, 83syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  <_  N )
8573, 77, 78, 80, 84letrd 8278 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  <_  N )
8666, 68, 70, 72, 85elfzd 10220 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  ( M ... N
) )
8765, 86, 36syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  B  e.  CC )
8887fmpttd 5792 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) : ( M ... (
j  +  1 ) ) --> CC )
8928, 60, 61, 62, 64, 88gsumsplit1r 13439 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) ) ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) ) ) )
90 fzssp1 10271 . . . . . . . . . . . 12  |-  ( M ... j )  C_  ( M ... ( j  +  1 ) )
91 resmpt 5053 . . . . . . . . . . . 12  |-  ( ( M ... j ) 
C_  ( M ... ( j  +  1 ) )  ->  (
( k  e.  ( M ... ( j  +  1 ) ) 
|->  B )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j
)  |->  B ) )
9290, 91mp1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( k  e.  ( M ... ( j  +  1 ) )  |->  B )  |`  ( M ... j
) )  =  ( k  e.  ( M ... j )  |->  B ) )
9392oveq2d 6023 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) )  =  (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) ) )
94 peano2uz 9786 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
9563, 94syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
97 eluzfz2 10236 . . . . . . . . . . . 12  |-  ( ( j  +  1 )  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( M ... (
j  +  1 ) ) )
9896, 97syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... ( j  +  1 ) ) )
99 rspcsbela 3184 . . . . . . . . . . . 12  |-  ( ( ( j  +  1 )  e.  ( M ... N )  /\  A. k  e.  ( M ... N ) B  e.  CC )  ->  [_ ( j  +  1 )  /  k ]_ B  e.  CC )
10081, 37, 99syl2anr 290 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  [_ ( j  +  1 )  /  k ]_ B  e.  CC )
101 eqid 2229 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... ( j  +  1 ) )  |->  B )  =  ( k  e.  ( M ... (
j  +  1 ) )  |->  B )
102101fvmpts 5714 . . . . . . . . . . 11  |-  ( ( ( j  +  1 )  e.  ( M ... ( j  +  1 ) )  /\  [_ ( j  +  1 )  /  k ]_ B  e.  CC )  ->  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) )  =  [_ ( j  +  1 )  /  k ]_ B )
10398, 100, 102syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( k  e.  ( M ... ( j  +  1 ) )  |->  B ) `
 ( j  +  1 ) )  = 
[_ ( j  +  1 )  /  k ]_ B )
10493, 103oveq12d 6025 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) ) ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B ) )
105 cnfld0 14543 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
10629, 30mp1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->fld 
e.  Mnd )
10774adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ZZ )
108 fzelp1 10278 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... j )  ->  k  e.  ( M ... (
j  +  1 ) ) )
109108, 87sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... j
) )  ->  B  e.  CC )
110109fmpttd 5792 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( k  e.  ( M ... j
)  |->  B ) : ( M ... j
) --> CC )
11128, 105, 106, 62, 107, 110gsumfzcl 13540 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  e.  CC )
112111, 100addcld 8174 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B )  e.  CC )
113 oveq1 6014 . . . . . . . . . . 11  |-  ( x  =  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  -> 
( x  +  y )  =  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  y ) )
114 oveq2 6015 . . . . . . . . . . 11  |-  ( y  =  [_ ( j  +  1 )  / 
k ]_ B  ->  (
(fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  y )  =  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ (
j  +  1 )  /  k ]_ B
) )
115 eqid 2229 . . . . . . . . . . 11  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  =  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )
116113, 114, 115ovmpog 6145 . . . . . . . . . 10  |-  ( ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  e.  CC  /\  [_ (
j  +  1 )  /  k ]_ B  e.  CC  /\  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ (
j  +  1 )  /  k ]_ B
)  e.  CC )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
117111, 100, 112, 116syl3anc 1271 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
11889, 104, 1173eqtrd 2266 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
119118adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
120 fzsuc 10273 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( M ... ( j  +  1 ) )  =  ( ( M ... j
)  u.  { ( j  +  1 ) } ) )
12164, 120syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( M ... ( j  +  1 ) )  =  ( ( M ... j
)  u.  { ( j  +  1 ) } ) )
122121sumeq1d 11885 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( M ... ( j  +  1 ) ) B  =  sum_ k  e.  ( ( M ... j )  u.  {
( j  +  1 ) } ) B )
123 nfv 1574 . . . . . . . . . 10  |-  F/ k ( ph  /\  j  e.  ( M..^ N ) )
124 nfcsb1v 3157 . . . . . . . . . 10  |-  F/_ k [_ ( j  +  1 )  /  k ]_ B
12562, 107fzfigd 10661 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( M ... j )  e.  Fin )
126107peano2zd 9580 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ZZ )
127 fzp1nel 10308 . . . . . . . . . . 11  |-  -.  (
j  +  1 )  e.  ( M ... j )
128127a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  -.  ( j  +  1 )  e.  ( M ... j
) )
129 csbeq1a 3133 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  B  =  [_ ( j  +  1 )  /  k ]_ B )
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11929 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( ( M ... j
)  u.  { ( j  +  1 ) } ) B  =  ( sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
131122, 130eqtrd 2262 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( M ... ( j  +  1 ) ) B  =  ( sum_ k  e.  ( M ... j ) B  +  [_ ( j  +  1 )  /  k ]_ B ) )
132131adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  sum_ k  e.  ( M ... (
j  +  1 ) ) B  =  (
sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
13359, 119, 1323eqtr4d 2272 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B )
134133ex 115 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) )
135134expcom 116 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
136135a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
1379, 15, 21, 27, 57, 136fzind2 10453 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) )
1383, 137mpcom 36 1  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   A.wral 2508   [_csb 3124    u. cun 3195    C_ wss 3197   {csn 3666   class class class wbr 4083    |-> cmpt 4145    |` cres 4721   ` cfv 5318  (class class class)co 6007    e. cmpo 6009   CCcc 8005   0cc0 8007   1c1 8008    + caddc 8010    <_ cle 8190   ZZcz 9454   ZZ>=cuz 9730   ...cfz 10212  ..^cfzo 10346   sum_csu 11872    gsumg cgsu 13298   Mndcmnd 13457   Ringcrg 13967  ℂfldccnfld 14528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125  ax-arch 8126  ax-caucvg 8127  ax-addf 8129  ax-mulf 8130
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-po 4387  df-iso 4388  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-isom 5327  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-irdg 6522  df-frec 6543  df-1o 6568  df-oadd 6572  df-er 6688  df-en 6896  df-dom 6897  df-fin 6898  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-9 9184  df-n0 9378  df-z 9455  df-dec 9587  df-uz 9731  df-q 9823  df-rp 9858  df-fz 10213  df-fzo 10347  df-seqfrec 10678  df-exp 10769  df-ihash 11006  df-cj 11361  df-re 11362  df-im 11363  df-rsqrt 11517  df-abs 11518  df-clim 11798  df-sumdc 11873  df-struct 13042  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-starv 13133  df-tset 13137  df-ple 13138  df-ds 13140  df-unif 13141  df-0g 13299  df-igsum 13300  df-topgen 13301  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mulg 13665  df-cmn 13831  df-mgp 13892  df-ring 13969  df-cring 13970  df-bl 14518  df-mopn 14519  df-fg 14521  df-metu 14522  df-cnfld 14529
This theorem is referenced by:  gsumfzfsum  14560
  Copyright terms: Public domain W3C validator