ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm Unicode version

Theorem gsumfzfsumlemm 14516
Description: Lemma for gsumfzfsum 14517. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumfzfsumlemm.b  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )
Assertion
Ref Expression
gsumfzfsumlemm  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B )
Distinct variable groups:    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem gsumfzfsumlemm
Dummy variables  j  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10196 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 oveq2 5982 . . . . . . 7  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
54mpteq1d 4148 . . . . . 6  |-  ( w  =  M  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... M )  |->  B ) )
65oveq2d 5990 . . . . 5  |-  ( w  =  M  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) ) )
74sumeq1d 11843 . . . . 5  |-  ( w  =  M  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... M ) B )
86, 7eqeq12d 2224 . . . 4  |-  ( w  =  M  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) )
98imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) ) )
10 oveq2 5982 . . . . . . 7  |-  ( w  =  j  ->  ( M ... w )  =  ( M ... j
) )
1110mpteq1d 4148 . . . . . 6  |-  ( w  =  j  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... j )  |->  B ) )
1211oveq2d 5990 . . . . 5  |-  ( w  =  j  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) )
1310sumeq1d 11843 . . . . 5  |-  ( w  =  j  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... j ) B )
1412, 13eqeq12d 2224 . . . 4  |-  ( w  =  j  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B ) )
1514imbi2d 230 . . 3  |-  ( w  =  j  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B ) ) )
16 oveq2 5982 . . . . . . 7  |-  ( w  =  ( j  +  1 )  ->  ( M ... w )  =  ( M ... (
j  +  1 ) ) )
1716mpteq1d 4148 . . . . . 6  |-  ( w  =  ( j  +  1 )  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... ( j  +  1 ) )  |->  B ) )
1817oveq2d 5990 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) ) )
1916sumeq1d 11843 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... ( j  +  1 ) ) B )
2018, 19eqeq12d 2224 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) )
2120imbi2d 230 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
22 oveq2 5982 . . . . . . 7  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
2322mpteq1d 4148 . . . . . 6  |-  ( w  =  N  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... N )  |->  B ) )
2423oveq2d 5990 . . . . 5  |-  ( w  =  N  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) ) )
2522sumeq1d 11843 . . . . 5  |-  ( w  =  N  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... N ) B )
2624, 25eqeq12d 2224 . . . 4  |-  ( w  =  N  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) )
2726imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) ) )
28 cnfldbas 14489 . . . . . 6  |-  CC  =  ( Base ` fld )
29 cnring 14499 . . . . . . 7  |-fld  e.  Ring
30 ringmnd 13935 . . . . . . 7  |-  (fld  e.  Ring  ->fld  e.  Mnd )
3129, 30mp1i 10 . . . . . 6  |-  ( ph  ->fld  e. 
Mnd )
32 eluzel2 9695 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
331, 32syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
34 eluzfz1 10195 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
351, 34syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
36 gsumfzfsumlemm.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )
3736ralrimiva 2583 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) B  e.  CC )
38 nfcsb1v 3137 . . . . . . . . 9  |-  F/_ k [_ M  /  k ]_ B
3938nfel1 2363 . . . . . . . 8  |-  F/ k
[_ M  /  k ]_ B  e.  CC
40 csbeq1a 3113 . . . . . . . . 9  |-  ( k  =  M  ->  B  =  [_ M  /  k ]_ B )
4140eleq1d 2278 . . . . . . . 8  |-  ( k  =  M  ->  ( B  e.  CC  <->  [_ M  / 
k ]_ B  e.  CC ) )
4239, 41rspc 2881 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) B  e.  CC  ->  [_ M  /  k ]_ B  e.  CC ) )
4335, 37, 42sylc 62 . . . . . 6  |-  ( ph  ->  [_ M  /  k ]_ B  e.  CC )
4440adantl 277 . . . . . 6  |-  ( (
ph  /\  k  =  M )  ->  B  =  [_ M  /  k ]_ B )
45 nfv 1554 . . . . . 6  |-  F/ k
ph
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13848 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  { M }  |->  B ) )  =  [_ M  /  k ]_ B
)
47 fzsn 10230 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
4833, 47syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... M
)  =  { M } )
4948mpteq1d 4148 . . . . . 6  |-  ( ph  ->  ( k  e.  ( M ... M ) 
|->  B )  =  ( k  e.  { M }  |->  B ) )
5049oveq2d 5990 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  { M }  |->  B ) ) )
5147sumeq1d 11843 . . . . . . 7  |-  ( M  e.  ZZ  ->  sum_ k  e.  ( M ... M
) B  =  sum_ k  e.  { M } B )
5233, 51syl 14 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) B  =  sum_ k  e.  { M } B
)
53 sumsns 11892 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  { M } B  =  [_ M  /  k ]_ B
)
5433, 43, 53syl2anc 411 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M } B  =  [_ M  /  k ]_ B
)
5552, 54eqtrd 2242 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) B  =  [_ M  /  k ]_ B
)
5646, 50, 553eqtr4d 2252 . . . 4  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B )
5756a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) )
58 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )
5958oveq1d 5989 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (
(fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ ( j  +  1 )  /  k ]_ B )  =  (
sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
60 mpocnfldadd 14490 . . . . . . . . . 10  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  =  ( +g  ` fld )
6129a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->fld 
e.  Ring )
6233adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  M  e.  ZZ )
63 elfzouz 10315 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
6463adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  (
ZZ>= `  M ) )
65 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  ph )
6665, 33syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  M  e.  ZZ )
67 elfzoel2 10310 . . . . . . . . . . . . . 14  |-  ( j  e.  ( M..^ N
)  ->  N  e.  ZZ )
6867ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  N  e.  ZZ )
69 elfzelz 10189 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  k  e.  ZZ )
7069adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  ZZ )
71 elfzle1 10191 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  M  <_  k )
7271adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  M  <_  k )
7370zred 9537 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  RR )
74 elfzoelz 10311 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ZZ )
7574ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  j  e.  ZZ )
7675peano2zd 9540 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  ZZ )
7776zred 9537 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  RR )
7868zred 9537 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  N  e.  RR )
79 elfzle2 10192 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  k  <_  ( j  +  1 ) )
8079adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  <_  ( j  +  1 ) )
81 fzofzp1 10400 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
8281ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  ( M ... N ) )
83 elfzle2 10192 . . . . . . . . . . . . . . 15  |-  ( ( j  +  1 )  e.  ( M ... N )  ->  (
j  +  1 )  <_  N )
8482, 83syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  <_  N )
8573, 77, 78, 80, 84letrd 8238 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  <_  N )
8666, 68, 70, 72, 85elfzd 10180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  ( M ... N
) )
8765, 86, 36syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  B  e.  CC )
8887fmpttd 5763 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) : ( M ... (
j  +  1 ) ) --> CC )
8928, 60, 61, 62, 64, 88gsumsplit1r 13397 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) ) ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) ) ) )
90 fzssp1 10231 . . . . . . . . . . . 12  |-  ( M ... j )  C_  ( M ... ( j  +  1 ) )
91 resmpt 5029 . . . . . . . . . . . 12  |-  ( ( M ... j ) 
C_  ( M ... ( j  +  1 ) )  ->  (
( k  e.  ( M ... ( j  +  1 ) ) 
|->  B )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j
)  |->  B ) )
9290, 91mp1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( k  e.  ( M ... ( j  +  1 ) )  |->  B )  |`  ( M ... j
) )  =  ( k  e.  ( M ... j )  |->  B ) )
9392oveq2d 5990 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) )  =  (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) ) )
94 peano2uz 9746 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
9563, 94syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
97 eluzfz2 10196 . . . . . . . . . . . 12  |-  ( ( j  +  1 )  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( M ... (
j  +  1 ) ) )
9896, 97syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... ( j  +  1 ) ) )
99 rspcsbela 3164 . . . . . . . . . . . 12  |-  ( ( ( j  +  1 )  e.  ( M ... N )  /\  A. k  e.  ( M ... N ) B  e.  CC )  ->  [_ ( j  +  1 )  /  k ]_ B  e.  CC )
10081, 37, 99syl2anr 290 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  [_ ( j  +  1 )  /  k ]_ B  e.  CC )
101 eqid 2209 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... ( j  +  1 ) )  |->  B )  =  ( k  e.  ( M ... (
j  +  1 ) )  |->  B )
102101fvmpts 5685 . . . . . . . . . . 11  |-  ( ( ( j  +  1 )  e.  ( M ... ( j  +  1 ) )  /\  [_ ( j  +  1 )  /  k ]_ B  e.  CC )  ->  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) )  =  [_ ( j  +  1 )  /  k ]_ B )
10398, 100, 102syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( k  e.  ( M ... ( j  +  1 ) )  |->  B ) `
 ( j  +  1 ) )  = 
[_ ( j  +  1 )  /  k ]_ B )
10493, 103oveq12d 5992 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) ) ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B ) )
105 cnfld0 14500 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
10629, 30mp1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->fld 
e.  Mnd )
10774adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ZZ )
108 fzelp1 10238 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... j )  ->  k  e.  ( M ... (
j  +  1 ) ) )
109108, 87sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... j
) )  ->  B  e.  CC )
110109fmpttd 5763 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( k  e.  ( M ... j
)  |->  B ) : ( M ... j
) --> CC )
11128, 105, 106, 62, 107, 110gsumfzcl 13498 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  e.  CC )
112111, 100addcld 8134 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B )  e.  CC )
113 oveq1 5981 . . . . . . . . . . 11  |-  ( x  =  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  -> 
( x  +  y )  =  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  y ) )
114 oveq2 5982 . . . . . . . . . . 11  |-  ( y  =  [_ ( j  +  1 )  / 
k ]_ B  ->  (
(fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  y )  =  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ (
j  +  1 )  /  k ]_ B
) )
115 eqid 2209 . . . . . . . . . . 11  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  =  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )
116113, 114, 115ovmpog 6110 . . . . . . . . . 10  |-  ( ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  e.  CC  /\  [_ (
j  +  1 )  /  k ]_ B  e.  CC  /\  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ (
j  +  1 )  /  k ]_ B
)  e.  CC )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
117111, 100, 112, 116syl3anc 1252 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
11889, 104, 1173eqtrd 2246 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
119118adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
120 fzsuc 10233 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( M ... ( j  +  1 ) )  =  ( ( M ... j
)  u.  { ( j  +  1 ) } ) )
12164, 120syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( M ... ( j  +  1 ) )  =  ( ( M ... j
)  u.  { ( j  +  1 ) } ) )
122121sumeq1d 11843 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( M ... ( j  +  1 ) ) B  =  sum_ k  e.  ( ( M ... j )  u.  {
( j  +  1 ) } ) B )
123 nfv 1554 . . . . . . . . . 10  |-  F/ k ( ph  /\  j  e.  ( M..^ N ) )
124 nfcsb1v 3137 . . . . . . . . . 10  |-  F/_ k [_ ( j  +  1 )  /  k ]_ B
12562, 107fzfigd 10620 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( M ... j )  e.  Fin )
126107peano2zd 9540 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ZZ )
127 fzp1nel 10268 . . . . . . . . . . 11  |-  -.  (
j  +  1 )  e.  ( M ... j )
128127a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  -.  ( j  +  1 )  e.  ( M ... j
) )
129 csbeq1a 3113 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  B  =  [_ ( j  +  1 )  /  k ]_ B )
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11887 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( ( M ... j
)  u.  { ( j  +  1 ) } ) B  =  ( sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
131122, 130eqtrd 2242 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( M ... ( j  +  1 ) ) B  =  ( sum_ k  e.  ( M ... j ) B  +  [_ ( j  +  1 )  /  k ]_ B ) )
132131adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  sum_ k  e.  ( M ... (
j  +  1 ) ) B  =  (
sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
13359, 119, 1323eqtr4d 2252 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B )
134133ex 115 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) )
135134expcom 116 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
136135a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
1379, 15, 21, 27, 57, 136fzind2 10412 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) )
1383, 137mpcom 36 1  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1375    e. wcel 2180   A.wral 2488   [_csb 3104    u. cun 3175    C_ wss 3177   {csn 3646   class class class wbr 4062    |-> cmpt 4124    |` cres 4698   ` cfv 5294  (class class class)co 5974    e. cmpo 5976   CCcc 7965   0cc0 7967   1c1 7968    + caddc 7970    <_ cle 8150   ZZcz 9414   ZZ>=cuz 9690   ...cfz 10172  ..^cfzo 10306   sum_csu 11830    gsumg cgsu 13256   Mndcmnd 13415   Ringcrg 13925  ℂfldccnfld 14485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-nul 4189  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-iinf 4657  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085  ax-arch 8086  ax-caucvg 8087  ax-addf 8089  ax-mulf 8090
This theorem depends on definitions:  df-bi 117  df-dc 839  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-if 3583  df-pw 3631  df-sn 3652  df-pr 3653  df-tp 3654  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-tr 4162  df-id 4361  df-po 4364  df-iso 4365  df-iord 4434  df-on 4436  df-ilim 4437  df-suc 4439  df-iom 4660  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-isom 5303  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-recs 6421  df-irdg 6486  df-frec 6507  df-1o 6532  df-oadd 6536  df-er 6650  df-en 6858  df-dom 6859  df-fin 6860  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-2 9137  df-3 9138  df-4 9139  df-5 9140  df-6 9141  df-7 9142  df-8 9143  df-9 9144  df-n0 9338  df-z 9415  df-dec 9547  df-uz 9691  df-q 9783  df-rp 9818  df-fz 10173  df-fzo 10307  df-seqfrec 10637  df-exp 10728  df-ihash 10965  df-cj 11319  df-re 11320  df-im 11321  df-rsqrt 11475  df-abs 11476  df-clim 11756  df-sumdc 11831  df-struct 13000  df-ndx 13001  df-slot 13002  df-base 13004  df-sets 13005  df-plusg 13089  df-mulr 13090  df-starv 13091  df-tset 13095  df-ple 13096  df-ds 13098  df-unif 13099  df-0g 13257  df-igsum 13258  df-topgen 13259  df-mgm 13355  df-sgrp 13401  df-mnd 13416  df-grp 13502  df-minusg 13503  df-mulg 13623  df-cmn 13789  df-mgp 13850  df-ring 13927  df-cring 13928  df-bl 14475  df-mopn 14476  df-fg 14478  df-metu 14479  df-cnfld 14486
This theorem is referenced by:  gsumfzfsum  14517
  Copyright terms: Public domain W3C validator