ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gsumfzfsumlemm Unicode version

Theorem gsumfzfsumlemm 14075
Description: Lemma for gsumfzfsum 14076. The case where the sum is inhabited. (Contributed by Jim Kingdon, 9-Sep-2025.)
Hypotheses
Ref Expression
gsumfzfsumlemm.n  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
gsumfzfsumlemm.b  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )
Assertion
Ref Expression
gsumfzfsumlemm  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B )
Distinct variable groups:    k, M    k, N    ph, k
Allowed substitution hint:    B( k)

Proof of Theorem gsumfzfsumlemm
Dummy variables  j  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumfzfsumlemm.n . . 3  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzfz2 10098 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ( M ... N ) )
31, 2syl 14 . 2  |-  ( ph  ->  N  e.  ( M ... N ) )
4 oveq2 5926 . . . . . . 7  |-  ( w  =  M  ->  ( M ... w )  =  ( M ... M
) )
54mpteq1d 4114 . . . . . 6  |-  ( w  =  M  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... M )  |->  B ) )
65oveq2d 5934 . . . . 5  |-  ( w  =  M  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) ) )
74sumeq1d 11509 . . . . 5  |-  ( w  =  M  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... M ) B )
86, 7eqeq12d 2208 . . . 4  |-  ( w  =  M  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) )
98imbi2d 230 . . 3  |-  ( w  =  M  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) ) )
10 oveq2 5926 . . . . . . 7  |-  ( w  =  j  ->  ( M ... w )  =  ( M ... j
) )
1110mpteq1d 4114 . . . . . 6  |-  ( w  =  j  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... j )  |->  B ) )
1211oveq2d 5934 . . . . 5  |-  ( w  =  j  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) )
1310sumeq1d 11509 . . . . 5  |-  ( w  =  j  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... j ) B )
1412, 13eqeq12d 2208 . . . 4  |-  ( w  =  j  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B ) )
1514imbi2d 230 . . 3  |-  ( w  =  j  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B ) ) )
16 oveq2 5926 . . . . . . 7  |-  ( w  =  ( j  +  1 )  ->  ( M ... w )  =  ( M ... (
j  +  1 ) ) )
1716mpteq1d 4114 . . . . . 6  |-  ( w  =  ( j  +  1 )  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... ( j  +  1 ) )  |->  B ) )
1817oveq2d 5934 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) ) )
1916sumeq1d 11509 . . . . 5  |-  ( w  =  ( j  +  1 )  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... ( j  +  1 ) ) B )
2018, 19eqeq12d 2208 . . . 4  |-  ( w  =  ( j  +  1 )  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) )
2120imbi2d 230 . . 3  |-  ( w  =  ( j  +  1 )  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
22 oveq2 5926 . . . . . . 7  |-  ( w  =  N  ->  ( M ... w )  =  ( M ... N
) )
2322mpteq1d 4114 . . . . . 6  |-  ( w  =  N  ->  (
k  e.  ( M ... w )  |->  B )  =  ( k  e.  ( M ... N )  |->  B ) )
2423oveq2d 5934 . . . . 5  |-  ( w  =  N  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) ) )
2522sumeq1d 11509 . . . . 5  |-  ( w  =  N  ->  sum_ k  e.  ( M ... w
) B  =  sum_ k  e.  ( M ... N ) B )
2624, 25eqeq12d 2208 . . . 4  |-  ( w  =  N  ->  (
(fld  gsumg  ( k  e.  ( M ... w )  |->  B ) )  =  sum_ k  e.  ( M ... w ) B  <->  (fld  gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) )
2726imbi2d 230 . . 3  |-  ( w  =  N  ->  (
( ph  ->  (fld  gsumg  ( k  e.  ( M ... w ) 
|->  B ) )  = 
sum_ k  e.  ( M ... w ) B )  <->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) ) )
28 cnfldbas 14051 . . . . . 6  |-  CC  =  ( Base ` fld )
29 cnring 14058 . . . . . . 7  |-fld  e.  Ring
30 ringmnd 13502 . . . . . . 7  |-  (fld  e.  Ring  ->fld  e.  Mnd )
3129, 30mp1i 10 . . . . . 6  |-  ( ph  ->fld  e. 
Mnd )
32 eluzel2 9597 . . . . . . 7  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
331, 32syl 14 . . . . . 6  |-  ( ph  ->  M  e.  ZZ )
34 eluzfz1 10097 . . . . . . . 8  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
351, 34syl 14 . . . . . . 7  |-  ( ph  ->  M  e.  ( M ... N ) )
36 gsumfzfsumlemm.b . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  B  e.  CC )
3736ralrimiva 2567 . . . . . . 7  |-  ( ph  ->  A. k  e.  ( M ... N ) B  e.  CC )
38 nfcsb1v 3113 . . . . . . . . 9  |-  F/_ k [_ M  /  k ]_ B
3938nfel1 2347 . . . . . . . 8  |-  F/ k
[_ M  /  k ]_ B  e.  CC
40 csbeq1a 3089 . . . . . . . . 9  |-  ( k  =  M  ->  B  =  [_ M  /  k ]_ B )
4140eleq1d 2262 . . . . . . . 8  |-  ( k  =  M  ->  ( B  e.  CC  <->  [_ M  / 
k ]_ B  e.  CC ) )
4239, 41rspc 2858 . . . . . . 7  |-  ( M  e.  ( M ... N )  ->  ( A. k  e.  ( M ... N ) B  e.  CC  ->  [_ M  /  k ]_ B  e.  CC ) )
4335, 37, 42sylc 62 . . . . . 6  |-  ( ph  ->  [_ M  /  k ]_ B  e.  CC )
4440adantl 277 . . . . . 6  |-  ( (
ph  /\  k  =  M )  ->  B  =  [_ M  /  k ]_ B )
45 nfv 1539 . . . . . 6  |-  F/ k
ph
4628, 31, 33, 43, 44, 45, 38gsumfzsnfd 13415 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  { M }  |->  B ) )  =  [_ M  /  k ]_ B
)
47 fzsn 10132 . . . . . . . 8  |-  ( M  e.  ZZ  ->  ( M ... M )  =  { M } )
4833, 47syl 14 . . . . . . 7  |-  ( ph  ->  ( M ... M
)  =  { M } )
4948mpteq1d 4114 . . . . . 6  |-  ( ph  ->  ( k  e.  ( M ... M ) 
|->  B )  =  ( k  e.  { M }  |->  B ) )
5049oveq2d 5934 . . . . 5  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  =  (fld 
gsumg  ( k  e.  { M }  |->  B ) ) )
5147sumeq1d 11509 . . . . . . 7  |-  ( M  e.  ZZ  ->  sum_ k  e.  ( M ... M
) B  =  sum_ k  e.  { M } B )
5233, 51syl 14 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) B  =  sum_ k  e.  { M } B
)
53 sumsns 11558 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  [_ M  /  k ]_ B  e.  CC )  -> 
sum_ k  e.  { M } B  =  [_ M  /  k ]_ B
)
5433, 43, 53syl2anc 411 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  { M } B  =  [_ M  /  k ]_ B
)
5552, 54eqtrd 2226 . . . . 5  |-  ( ph  -> 
sum_ k  e.  ( M ... M ) B  =  [_ M  /  k ]_ B
)
5646, 50, 553eqtr4d 2236 . . . 4  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B )
5756a1i 9 . . 3  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... M ) 
|->  B ) )  = 
sum_ k  e.  ( M ... M ) B ) )
58 simpr 110 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )
5958oveq1d 5933 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (
(fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ ( j  +  1 )  /  k ]_ B )  =  (
sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
60 mpocnfldadd 14053 . . . . . . . . . 10  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  =  ( +g  ` fld )
6129a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->fld 
e.  Ring )
6233adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  M  e.  ZZ )
63 elfzouz 10217 . . . . . . . . . . 11  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ( ZZ>= `  M )
)
6463adantl 277 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  (
ZZ>= `  M ) )
65 simpll 527 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  ph )
6665, 33syl 14 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  M  e.  ZZ )
67 elfzoel2 10212 . . . . . . . . . . . . . 14  |-  ( j  e.  ( M..^ N
)  ->  N  e.  ZZ )
6867ad2antlr 489 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  N  e.  ZZ )
69 elfzelz 10091 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  k  e.  ZZ )
7069adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  ZZ )
71 elfzle1 10093 . . . . . . . . . . . . . 14  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  M  <_  k )
7271adantl 277 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  M  <_  k )
7370zred 9439 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  RR )
74 elfzoelz 10213 . . . . . . . . . . . . . . . . 17  |-  ( j  e.  ( M..^ N
)  ->  j  e.  ZZ )
7574ad2antlr 489 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  j  e.  ZZ )
7675peano2zd 9442 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  ZZ )
7776zred 9439 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  RR )
7868zred 9439 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  N  e.  RR )
79 elfzle2 10094 . . . . . . . . . . . . . . 15  |-  ( k  e.  ( M ... ( j  +  1 ) )  ->  k  <_  ( j  +  1 ) )
8079adantl 277 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  <_  ( j  +  1 ) )
81 fzofzp1 10294 . . . . . . . . . . . . . . . 16  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( M ... N
) )
8281ad2antlr 489 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  e.  ( M ... N ) )
83 elfzle2 10094 . . . . . . . . . . . . . . 15  |-  ( ( j  +  1 )  e.  ( M ... N )  ->  (
j  +  1 )  <_  N )
8482, 83syl 14 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  (
j  +  1 )  <_  N )
8573, 77, 78, 80, 84letrd 8143 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  <_  N )
8666, 68, 70, 72, 85elfzd 10082 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  k  e.  ( M ... N
) )
8765, 86, 36syl2anc 411 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... (
j  +  1 ) ) )  ->  B  e.  CC )
8887fmpttd 5713 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) : ( M ... (
j  +  1 ) ) --> CC )
8928, 60, 61, 62, 64, 88gsumsplit1r 12981 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) ) ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) ) ) )
90 fzssp1 10133 . . . . . . . . . . . 12  |-  ( M ... j )  C_  ( M ... ( j  +  1 ) )
91 resmpt 4990 . . . . . . . . . . . 12  |-  ( ( M ... j ) 
C_  ( M ... ( j  +  1 ) )  ->  (
( k  e.  ( M ... ( j  +  1 ) ) 
|->  B )  |`  ( M ... j ) )  =  ( k  e.  ( M ... j
)  |->  B ) )
9290, 91mp1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( k  e.  ( M ... ( j  +  1 ) )  |->  B )  |`  ( M ... j
) )  =  ( k  e.  ( M ... j )  |->  B ) )
9392oveq2d 5934 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) )  =  (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) ) )
94 peano2uz 9648 . . . . . . . . . . . . . 14  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
9563, 94syl 14 . . . . . . . . . . . . 13  |-  ( j  e.  ( M..^ N
)  ->  ( j  +  1 )  e.  ( ZZ>= `  M )
)
9695adantl 277 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  (
ZZ>= `  M ) )
97 eluzfz2 10098 . . . . . . . . . . . 12  |-  ( ( j  +  1 )  e.  ( ZZ>= `  M
)  ->  ( j  +  1 )  e.  ( M ... (
j  +  1 ) ) )
9896, 97syl 14 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ( M ... ( j  +  1 ) ) )
99 rspcsbela 3140 . . . . . . . . . . . 12  |-  ( ( ( j  +  1 )  e.  ( M ... N )  /\  A. k  e.  ( M ... N ) B  e.  CC )  ->  [_ ( j  +  1 )  /  k ]_ B  e.  CC )
10081, 37, 99syl2anr 290 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  [_ ( j  +  1 )  /  k ]_ B  e.  CC )
101 eqid 2193 . . . . . . . . . . . 12  |-  ( k  e.  ( M ... ( j  +  1 ) )  |->  B )  =  ( k  e.  ( M ... (
j  +  1 ) )  |->  B )
102101fvmpts 5635 . . . . . . . . . . 11  |-  ( ( ( j  +  1 )  e.  ( M ... ( j  +  1 ) )  /\  [_ ( j  +  1 )  /  k ]_ B  e.  CC )  ->  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) )  =  [_ ( j  +  1 )  /  k ]_ B )
10398, 100, 102syl2anc 411 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( ( k  e.  ( M ... ( j  +  1 ) )  |->  B ) `
 ( j  +  1 ) )  = 
[_ ( j  +  1 )  /  k ]_ B )
10493, 103oveq12d 5936 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B )  |`  ( M ... j ) ) ) ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) ) ( ( k  e.  ( M ... (
j  +  1 ) )  |->  B ) `  ( j  +  1 ) ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B ) )
105 cnfld0 14059 . . . . . . . . . . 11  |-  0  =  ( 0g ` fld )
10629, 30mp1i 10 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->fld 
e.  Mnd )
10774adantl 277 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  j  e.  ZZ )
108 fzelp1 10140 . . . . . . . . . . . . 13  |-  ( k  e.  ( M ... j )  ->  k  e.  ( M ... (
j  +  1 ) ) )
109108, 87sylan2 286 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  k  e.  ( M ... j
) )  ->  B  e.  CC )
110109fmpttd 5713 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( k  e.  ( M ... j
)  |->  B ) : ( M ... j
) --> CC )
11128, 105, 106, 62, 107, 110gsumfzcl 13071 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  e.  CC )
112111, 100addcld 8039 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B )  e.  CC )
113 oveq1 5925 . . . . . . . . . . 11  |-  ( x  =  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  -> 
( x  +  y )  =  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  y ) )
114 oveq2 5926 . . . . . . . . . . 11  |-  ( y  =  [_ ( j  +  1 )  / 
k ]_ B  ->  (
(fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  y )  =  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ (
j  +  1 )  /  k ]_ B
) )
115 eqid 2193 . . . . . . . . . . 11  |-  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )  =  ( x  e.  CC ,  y  e.  CC  |->  ( x  +  y ) )
116113, 114, 115ovmpog 6053 . . . . . . . . . 10  |-  ( ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  e.  CC  /\  [_ (
j  +  1 )  /  k ]_ B  e.  CC  /\  ( (fld  gsumg  ( k  e.  ( M ... j )  |->  B ) )  +  [_ (
j  +  1 )  /  k ]_ B
)  e.  CC )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
117111, 100, 112, 116syl3anc 1249 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) ) ( x  e.  CC , 
y  e.  CC  |->  ( x  +  y ) ) [_ ( j  +  1 )  / 
k ]_ B )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
11889, 104, 1173eqtrd 2230 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
119118adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  =  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  + 
[_ ( j  +  1 )  /  k ]_ B ) )
120 fzsuc 10135 . . . . . . . . . . 11  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( M ... ( j  +  1 ) )  =  ( ( M ... j
)  u.  { ( j  +  1 ) } ) )
12164, 120syl 14 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( M ... ( j  +  1 ) )  =  ( ( M ... j
)  u.  { ( j  +  1 ) } ) )
122121sumeq1d 11509 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( M ... ( j  +  1 ) ) B  =  sum_ k  e.  ( ( M ... j )  u.  {
( j  +  1 ) } ) B )
123 nfv 1539 . . . . . . . . . 10  |-  F/ k ( ph  /\  j  e.  ( M..^ N ) )
124 nfcsb1v 3113 . . . . . . . . . 10  |-  F/_ k [_ ( j  +  1 )  /  k ]_ B
12562, 107fzfigd 10502 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( M ... j )  e.  Fin )
126107peano2zd 9442 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( j  +  1 )  e.  ZZ )
127 fzp1nel 10170 . . . . . . . . . . 11  |-  -.  (
j  +  1 )  e.  ( M ... j )
128127a1i 9 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  -.  ( j  +  1 )  e.  ( M ... j
) )
129 csbeq1a 3089 . . . . . . . . . 10  |-  ( k  =  ( j  +  1 )  ->  B  =  [_ ( j  +  1 )  /  k ]_ B )
130123, 124, 125, 126, 128, 109, 129, 100fsumsplitsn 11553 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( ( M ... j
)  u.  { ( j  +  1 ) } ) B  =  ( sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
131122, 130eqtrd 2226 . . . . . . . 8  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  sum_ k  e.  ( M ... ( j  +  1 ) ) B  =  ( sum_ k  e.  ( M ... j ) B  +  [_ ( j  +  1 )  /  k ]_ B ) )
132131adantr 276 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  sum_ k  e.  ( M ... (
j  +  1 ) ) B  =  (
sum_ k  e.  ( M ... j ) B  +  [_ (
j  +  1 )  /  k ]_ B
) )
13359, 119, 1323eqtr4d 2236 . . . . . 6  |-  ( ( ( ph  /\  j  e.  ( M..^ N ) )  /\  (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B )
134133ex 115 . . . . 5  |-  ( (
ph  /\  j  e.  ( M..^ N ) )  ->  ( (fld  gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) )
135134expcom 116 . . . 4  |-  ( j  e.  ( M..^ N
)  ->  ( ph  ->  ( (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B  ->  (fld  gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
136135a2d 26 . . 3  |-  ( j  e.  ( M..^ N
)  ->  ( ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... j ) 
|->  B ) )  = 
sum_ k  e.  ( M ... j ) B )  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... ( j  +  1 ) ) 
|->  B ) )  = 
sum_ k  e.  ( M ... ( j  +  1 ) ) B ) ) )
1379, 15, 21, 27, 57, 136fzind2 10306 . 2  |-  ( N  e.  ( M ... N )  ->  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B ) )
1383, 137mpcom 36 1  |-  ( ph  ->  (fld 
gsumg  ( k  e.  ( M ... N ) 
|->  B ) )  = 
sum_ k  e.  ( M ... N ) B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   A.wral 2472   [_csb 3080    u. cun 3151    C_ wss 3153   {csn 3618   class class class wbr 4029    |-> cmpt 4090    |` cres 4661   ` cfv 5254  (class class class)co 5918    e. cmpo 5920   CCcc 7870   0cc0 7872   1c1 7873    + caddc 7875    <_ cle 8055   ZZcz 9317   ZZ>=cuz 9592   ...cfz 10074  ..^cfzo 10208   sum_csu 11496    gsumg cgsu 12868   Mndcmnd 12997   Ringcrg 13492  ℂfldccnfld 14047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992  ax-addf 7994  ax-mulf 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-frec 6444  df-1o 6469  df-oadd 6473  df-er 6587  df-en 6795  df-dom 6796  df-fin 6797  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-5 9044  df-6 9045  df-7 9046  df-8 9047  df-9 9048  df-n0 9241  df-z 9318  df-dec 9449  df-uz 9593  df-q 9685  df-rp 9720  df-fz 10075  df-fzo 10209  df-seqfrec 10519  df-exp 10610  df-ihash 10847  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-clim 11422  df-sumdc 11497  df-struct 12620  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-starv 12710  df-0g 12869  df-igsum 12870  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-mulg 13190  df-cmn 13356  df-mgp 13417  df-ring 13494  df-cring 13495  df-icnfld 14048
This theorem is referenced by:  gsumfzfsum  14076
  Copyright terms: Public domain W3C validator