ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise1 Unicode version

Theorem 4sqexercise1 12916
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12918. (Contributed by Jim Kingdon, 25-May-2025.)
Hypothesis
Ref Expression
4sqexercise1.s  |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^
2 ) }
Assertion
Ref Expression
4sqexercise1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, x
Allowed substitution hints:    S( x, n)

Proof of Theorem 4sqexercise1
StepHypRef Expression
1 nn0negz 9476 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9462 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
3 elfzelz 10217 . . . . . . 7  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
43adantl 277 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  x  e.  ZZ )
5 zsqcl 10827 . . . . . 6  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( x ^ 2 )  e.  ZZ )
7 zdceq 9518 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ )  -> DECID 
A  =  ( x ^ 2 ) )
82, 6, 7syl2an2r 597 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  A  =  ( x ^
2 ) )
91, 2, 8exfzdc 10441 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) A  =  ( x ^ 2 ) )
10 simpr 110 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  =  ( x ^ 2 ) )
11 zsqcl2 10834 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( x ^
2 )  e.  NN0 )
1310, 12eqeltrd 2306 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  NN0 )
1413nn0zd 9563 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  ZZ )
1514znegcld 9567 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u A  e.  ZZ )
16 simpl 109 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  ZZ )
17 zre 9446 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
1817adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  RR )
1913nn0red 9419 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  RR )
20 znegcl 9473 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
21 zzlesq 10925 . . . . . . . . . . . . 13  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  -u x  <_  ( -u x ^
2 ) )
2322adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  ( -u x ^ 2 ) )
24 zcn 9447 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  x  e.  CC )
25 sqneg 10815 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
2624, 25syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
2726adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( -u x ^ 2 )  =  ( x ^ 2 ) )
2823, 27breqtrd 4108 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  (
x ^ 2 ) )
2928, 10breqtrrd 4110 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  A
)
3018, 19, 29lenegcon1d 8670 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u A  <_  x
)
31 zzlesq 10925 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
3231adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  <_  (
x ^ 2 ) )
3332, 10breqtrrd 4110 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  <_  A
)
3415, 14, 16, 30, 33elfzd 10208 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  (
-u A ... A
) )
3534, 10jca 306 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( x  e.  ( -u A ... A )  /\  A  =  ( x ^
2 ) ) )
363anim1i 340 . . . . . 6  |-  ( ( x  e.  ( -u A ... A )  /\  A  =  ( x ^ 2 ) )  ->  ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) ) )
3735, 36impbii 126 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  <-> 
( x  e.  (
-u A ... A
)  /\  A  =  ( x ^ 2 ) ) )
3837rexbii2 2541 . . . 4  |-  ( E. x  e.  ZZ  A  =  ( x ^
2 )  <->  E. x  e.  ( -u A ... A ) A  =  ( x ^ 2 ) )
3938dcbii 845 . . 3  |-  (DECID  E. x  e.  ZZ  A  =  ( x ^ 2 )  <-> DECID  E. x  e.  ( -u A ... A ) A  =  ( x ^ 2 ) )
409, 39sylibr 134 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  A  =  ( x ^ 2 ) )
41 eqeq1 2236 . . . . 5  |-  ( n  =  A  ->  (
n  =  ( x ^ 2 )  <->  A  =  ( x ^ 2 ) ) )
4241rexbidv 2531 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  n  =  ( x ^ 2 )  <->  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
43 4sqexercise1.s . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^
2 ) }
4442, 43elab2g 2950 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
4544dcbid 843 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
4640, 45mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 839    = wceq 1395    e. wcel 2200   {cab 2215   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   RRcr 7994    <_ cle 8178   -ucneg 8314   2c2 9157   NN0cn0 9365   ZZcz 9442   ...cfz 10200   ^cexp 10755
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665  df-exp 10756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator