ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise1 Unicode version

Theorem 4sqexercise1 12796
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12798. (Contributed by Jim Kingdon, 25-May-2025.)
Hypothesis
Ref Expression
4sqexercise1.s  |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^
2 ) }
Assertion
Ref Expression
4sqexercise1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, x
Allowed substitution hints:    S( x, n)

Proof of Theorem 4sqexercise1
StepHypRef Expression
1 nn0negz 9426 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9412 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
3 elfzelz 10167 . . . . . . 7  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
43adantl 277 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  x  e.  ZZ )
5 zsqcl 10777 . . . . . 6  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( x ^ 2 )  e.  ZZ )
7 zdceq 9468 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ )  -> DECID 
A  =  ( x ^ 2 ) )
82, 6, 7syl2an2r 595 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  A  =  ( x ^
2 ) )
91, 2, 8exfzdc 10391 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) A  =  ( x ^ 2 ) )
10 simpr 110 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  =  ( x ^ 2 ) )
11 zsqcl2 10784 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( x ^
2 )  e.  NN0 )
1310, 12eqeltrd 2283 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  NN0 )
1413nn0zd 9513 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  ZZ )
1514znegcld 9517 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u A  e.  ZZ )
16 simpl 109 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  ZZ )
17 zre 9396 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
1817adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  RR )
1913nn0red 9369 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  RR )
20 znegcl 9423 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
21 zzlesq 10875 . . . . . . . . . . . . 13  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  -u x  <_  ( -u x ^
2 ) )
2322adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  ( -u x ^ 2 ) )
24 zcn 9397 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  x  e.  CC )
25 sqneg 10765 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
2624, 25syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
2726adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( -u x ^ 2 )  =  ( x ^ 2 ) )
2823, 27breqtrd 4077 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  (
x ^ 2 ) )
2928, 10breqtrrd 4079 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  A
)
3018, 19, 29lenegcon1d 8620 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u A  <_  x
)
31 zzlesq 10875 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
3231adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  <_  (
x ^ 2 ) )
3332, 10breqtrrd 4079 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  <_  A
)
3415, 14, 16, 30, 33elfzd 10158 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  (
-u A ... A
) )
3534, 10jca 306 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( x  e.  ( -u A ... A )  /\  A  =  ( x ^
2 ) ) )
363anim1i 340 . . . . . 6  |-  ( ( x  e.  ( -u A ... A )  /\  A  =  ( x ^ 2 ) )  ->  ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) ) )
3735, 36impbii 126 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  <-> 
( x  e.  (
-u A ... A
)  /\  A  =  ( x ^ 2 ) ) )
3837rexbii2 2518 . . . 4  |-  ( E. x  e.  ZZ  A  =  ( x ^
2 )  <->  E. x  e.  ( -u A ... A ) A  =  ( x ^ 2 ) )
3938dcbii 842 . . 3  |-  (DECID  E. x  e.  ZZ  A  =  ( x ^ 2 )  <-> DECID  E. x  e.  ( -u A ... A ) A  =  ( x ^ 2 ) )
409, 39sylibr 134 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  A  =  ( x ^ 2 ) )
41 eqeq1 2213 . . . . 5  |-  ( n  =  A  ->  (
n  =  ( x ^ 2 )  <->  A  =  ( x ^ 2 ) ) )
4241rexbidv 2508 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  n  =  ( x ^ 2 )  <->  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
43 4sqexercise1.s . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^
2 ) }
4442, 43elab2g 2924 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
4544dcbid 840 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
4640, 45mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 836    = wceq 1373    e. wcel 2177   {cab 2192   E.wrex 2486   class class class wbr 4051  (class class class)co 5957   CCcc 7943   RRcr 7944    <_ cle 8128   -ucneg 8264   2c2 9107   NN0cn0 9315   ZZcz 9392   ...cfz 10150   ^cexp 10705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-iinf 4644  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-mulrcl 8044  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-0lt1 8051  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-precex 8055  ax-cnre 8056  ax-pre-ltirr 8057  ax-pre-ltwlin 8058  ax-pre-lttrn 8059  ax-pre-apti 8060  ax-pre-ltadd 8061  ax-pre-mulgt0 8062  ax-pre-mulext 8063
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-tr 4151  df-id 4348  df-po 4351  df-iso 4352  df-iord 4421  df-on 4423  df-ilim 4424  df-suc 4426  df-iom 4647  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-recs 6404  df-frec 6490  df-pnf 8129  df-mnf 8130  df-xr 8131  df-ltxr 8132  df-le 8133  df-sub 8265  df-neg 8266  df-reap 8668  df-ap 8675  df-div 8766  df-inn 9057  df-2 9115  df-n0 9316  df-z 9393  df-uz 9669  df-fz 10151  df-fzo 10285  df-seqfrec 10615  df-exp 10706
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator