ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  4sqexercise1 Unicode version

Theorem 4sqexercise1 12692
Description: Exercise which may help in understanding the proof of 4sqlemsdc 12694. (Contributed by Jim Kingdon, 25-May-2025.)
Hypothesis
Ref Expression
4sqexercise1.s  |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^
2 ) }
Assertion
Ref Expression
4sqexercise1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Distinct variable group:    A, n, x
Allowed substitution hints:    S( x, n)

Proof of Theorem 4sqexercise1
StepHypRef Expression
1 nn0negz 9405 . . . 4  |-  ( A  e.  NN0  ->  -u A  e.  ZZ )
2 nn0z 9391 . . . 4  |-  ( A  e.  NN0  ->  A  e.  ZZ )
3 elfzelz 10146 . . . . . . 7  |-  ( x  e.  ( -u A ... A )  ->  x  e.  ZZ )
43adantl 277 . . . . . 6  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  ->  x  e.  ZZ )
5 zsqcl 10753 . . . . . 6  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
64, 5syl 14 . . . . 5  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> 
( x ^ 2 )  e.  ZZ )
7 zdceq 9447 . . . . 5  |-  ( ( A  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ )  -> DECID 
A  =  ( x ^ 2 ) )
82, 6, 7syl2an2r 595 . . . 4  |-  ( ( A  e.  NN0  /\  x  e.  ( -u A ... A ) )  -> DECID  A  =  ( x ^
2 ) )
91, 2, 8exfzdc 10367 . . 3  |-  ( A  e.  NN0  -> DECID  E. x  e.  (
-u A ... A
) A  =  ( x ^ 2 ) )
10 simpr 110 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  =  ( x ^ 2 ) )
11 zsqcl2 10760 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  NN0 )
1211adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( x ^
2 )  e.  NN0 )
1310, 12eqeltrd 2281 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  NN0 )
1413nn0zd 9492 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  ZZ )
1514znegcld 9496 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u A  e.  ZZ )
16 simpl 109 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  ZZ )
17 zre 9375 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  e.  RR )
1817adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  RR )
1913nn0red 9348 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  A  e.  RR )
20 znegcl 9402 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
21 zzlesq 10851 . . . . . . . . . . . . 13  |-  ( -u x  e.  ZZ  ->  -u x  <_  ( -u x ^ 2 ) )
2220, 21syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  -u x  <_  ( -u x ^
2 ) )
2322adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  ( -u x ^ 2 ) )
24 zcn 9376 . . . . . . . . . . . . 13  |-  ( x  e.  ZZ  ->  x  e.  CC )
25 sqneg 10741 . . . . . . . . . . . . 13  |-  ( x  e.  CC  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
2624, 25syl 14 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  ( -u x ^ 2 )  =  ( x ^
2 ) )
2726adantr 276 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( -u x ^ 2 )  =  ( x ^ 2 ) )
2823, 27breqtrd 4069 . . . . . . . . . 10  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  (
x ^ 2 ) )
2928, 10breqtrrd 4071 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u x  <_  A
)
3018, 19, 29lenegcon1d 8599 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  -u A  <_  x
)
31 zzlesq 10851 . . . . . . . . . 10  |-  ( x  e.  ZZ  ->  x  <_  ( x ^ 2 ) )
3231adantr 276 . . . . . . . . 9  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  <_  (
x ^ 2 ) )
3332, 10breqtrrd 4071 . . . . . . . 8  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  <_  A
)
3415, 14, 16, 30, 33elfzd 10137 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  x  e.  (
-u A ... A
) )
3534, 10jca 306 . . . . . 6  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  ->  ( x  e.  ( -u A ... A )  /\  A  =  ( x ^
2 ) ) )
363anim1i 340 . . . . . 6  |-  ( ( x  e.  ( -u A ... A )  /\  A  =  ( x ^ 2 ) )  ->  ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) ) )
3735, 36impbii 126 . . . . 5  |-  ( ( x  e.  ZZ  /\  A  =  ( x ^ 2 ) )  <-> 
( x  e.  (
-u A ... A
)  /\  A  =  ( x ^ 2 ) ) )
3837rexbii2 2516 . . . 4  |-  ( E. x  e.  ZZ  A  =  ( x ^
2 )  <->  E. x  e.  ( -u A ... A ) A  =  ( x ^ 2 ) )
3938dcbii 841 . . 3  |-  (DECID  E. x  e.  ZZ  A  =  ( x ^ 2 )  <-> DECID  E. x  e.  ( -u A ... A ) A  =  ( x ^ 2 ) )
409, 39sylibr 134 . 2  |-  ( A  e.  NN0  -> DECID  E. x  e.  ZZ  A  =  ( x ^ 2 ) )
41 eqeq1 2211 . . . . 5  |-  ( n  =  A  ->  (
n  =  ( x ^ 2 )  <->  A  =  ( x ^ 2 ) ) )
4241rexbidv 2506 . . . 4  |-  ( n  =  A  ->  ( E. x  e.  ZZ  n  =  ( x ^ 2 )  <->  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
43 4sqexercise1.s . . . 4  |-  S  =  { n  |  E. x  e.  ZZ  n  =  ( x ^
2 ) }
4442, 43elab2g 2919 . . 3  |-  ( A  e.  NN0  ->  ( A  e.  S  <->  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
4544dcbid 839 . 2  |-  ( A  e.  NN0  ->  (DECID  A  e.  S  <-> DECID  E. x  e.  ZZ  A  =  ( x ^ 2 ) ) )
4640, 45mpbird 167 1  |-  ( A  e.  NN0  -> DECID  A  e.  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104  DECID wdc 835    = wceq 1372    e. wcel 2175   {cab 2190   E.wrex 2484   class class class wbr 4043  (class class class)co 5943   CCcc 7922   RRcr 7923    <_ cle 8107   -ucneg 8243   2c2 9086   NN0cn0 9294   ZZcz 9371   ...cfz 10129   ^cexp 10681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-n0 9295  df-z 9372  df-uz 9648  df-fz 10130  df-fzo 10264  df-seqfrec 10591  df-exp 10682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator