Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elfzoel1 | Unicode version |
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.) |
Ref | Expression |
---|---|
elfzoel1 | ..^ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fzo 10024 | . 2 ..^ | |
2 | 1 | elmpocl1 6013 | 1 ..^ |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2128 (class class class)co 5818 c1 7716 cmin 8029 cz 9150 cfz 9894 ..^cfzo 10023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-iota 5132 df-fun 5169 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-fzo 10024 |
This theorem is referenced by: elfzoelz 10028 fzoval 10029 elfzo2 10031 elfzole1 10036 elfzolt2 10037 elfzolt3 10038 elfzolt3b 10040 fzospliti 10057 fzoaddel 10073 fzosubel 10075 fzosubel3 10077 fzofzp1 10108 fzostep1 10118 fzomaxdiflem 10994 fzocongeq 11731 |
Copyright terms: Public domain | W3C validator |