ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel1 Unicode version

Theorem elfzoel1 10341
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )

Proof of Theorem elfzoel1
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10339 . 2  |- ..^  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  - 
1 ) ) )
21elmpocl1 6201 1  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2200  (class class class)co 6001   1c1 8000    - cmin 8317   ZZcz 9446   ...cfz 10204  ..^cfzo 10338
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-fzo 10339
This theorem is referenced by:  elfzoelz  10343  fzoval  10344  elfzo2  10346  elfzole1  10352  elfzolt2  10353  elfzolt3  10354  elfzolt3b  10356  fzospliti  10374  fzoaddel  10393  elincfzoext  10399  fzosubel  10400  fzosubel3  10402  fzofzp1  10433  fzostep1  10443  fzomaxdiflem  11623  fzocongeq  12369
  Copyright terms: Public domain W3C validator