ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elfzoel1 Unicode version

Theorem elfzoel1 10026
Description: Reverse closure for half-open integer sets. (Contributed by Stefan O'Rear, 14-Aug-2015.)
Assertion
Ref Expression
elfzoel1  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )

Proof of Theorem elfzoel1
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-fzo 10024 . 2  |- ..^  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  ( m ... ( n  - 
1 ) ) )
21elmpocl1 6013 1  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2128  (class class class)co 5818   1c1 7716    - cmin 8029   ZZcz 9150   ...cfz 9894  ..^cfzo 10023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-iota 5132  df-fun 5169  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-fzo 10024
This theorem is referenced by:  elfzoelz  10028  fzoval  10029  elfzo2  10031  elfzole1  10036  elfzolt2  10037  elfzolt3  10038  elfzolt3b  10040  fzospliti  10057  fzoaddel  10073  fzosubel  10075  fzosubel3  10077  fzofzp1  10108  fzostep1  10118  fzomaxdiflem  10994  fzocongeq  11731
  Copyright terms: Public domain W3C validator