ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzomaxdiflem Unicode version

Theorem fzomaxdiflem 11054
Description: Lemma for fzomaxdif 11055. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzomaxdiflem  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( abs `  ( B  -  A )
)  e.  ( 0..^ ( D  -  C
) ) )

Proof of Theorem fzomaxdiflem
StepHypRef Expression
1 elfzoelz 10082 . . . . . . 7  |-  ( B  e.  ( C..^ D
)  ->  B  e.  ZZ )
21adantl 275 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  B  e.  ZZ )
3 elfzoelz 10082 . . . . . . 7  |-  ( A  e.  ( C..^ D
)  ->  A  e.  ZZ )
43adantr 274 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  A  e.  ZZ )
52, 4zsubcld 9318 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  e.  ZZ )
65zred 9313 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  e.  RR )
76adantr 274 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( B  -  A
)  e.  RR )
82zred 9313 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  B  e.  RR )
94zred 9313 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  A  e.  RR )
108, 9subge0d 8433 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( 0  <_  ( B  -  A )  <->  A  <_  B ) )
1110biimpar 295 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
0  <_  ( B  -  A ) )
12 absid 11013 . . 3  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <_  ( B  -  A ) )  -> 
( abs `  ( B  -  A )
)  =  ( B  -  A ) )
137, 11, 12syl2anc 409 . 2  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( abs `  ( B  -  A )
)  =  ( B  -  A ) )
14 elfzoel1 10080 . . . . . . . 8  |-  ( B  e.  ( C..^ D
)  ->  C  e.  ZZ )
1514adantl 275 . . . . . . 7  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  C  e.  ZZ )
1615zred 9313 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  C  e.  RR )
178, 16resubcld 8279 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  C )  e.  RR )
18 elfzoel2 10081 . . . . . . . 8  |-  ( B  e.  ( C..^ D
)  ->  D  e.  ZZ )
1918adantl 275 . . . . . . 7  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  D  e.  ZZ )
2019, 15zsubcld 9318 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( D  -  C )  e.  ZZ )
2120zred 9313 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( D  -  C )  e.  RR )
22 elfzole1 10090 . . . . . . 7  |-  ( A  e.  ( C..^ D
)  ->  C  <_  A )
2322adantr 274 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  C  <_  A )
2416, 9, 8, 23lesub2dd 8460 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  <_  ( B  -  C )
)
2519zred 9313 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  D  e.  RR )
26 elfzolt2 10091 . . . . . . 7  |-  ( B  e.  ( C..^ D
)  ->  B  <  D )
2726adantl 275 . . . . . 6  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  B  <  D )
288, 25, 16, 27ltsub1dd 8455 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  C )  <  ( D  -  C )
)
296, 17, 21, 24, 28lelttrd 8023 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( B  -  A )  <  ( D  -  C )
)
3029adantr 274 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( B  -  A
)  <  ( D  -  C ) )
31 0zd 9203 . . . . 5  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  0  e.  ZZ )
32 elfzo 10084 . . . . 5  |-  ( ( ( B  -  A
)  e.  ZZ  /\  0  e.  ZZ  /\  ( D  -  C )  e.  ZZ )  ->  (
( B  -  A
)  e.  ( 0..^ ( D  -  C
) )  <->  ( 0  <_  ( B  -  A )  /\  ( B  -  A )  <  ( D  -  C
) ) ) )
335, 31, 20, 32syl3anc 1228 . . . 4  |-  ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  ->  ( ( B  -  A )  e.  ( 0..^ ( D  -  C ) )  <-> 
( 0  <_  ( B  -  A )  /\  ( B  -  A
)  <  ( D  -  C ) ) ) )
3433adantr 274 . . 3  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( ( B  -  A )  e.  ( 0..^ ( D  -  C ) )  <->  ( 0  <_  ( B  -  A )  /\  ( B  -  A )  <  ( D  -  C
) ) ) )
3511, 30, 34mpbir2and 934 . 2  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( B  -  A
)  e.  ( 0..^ ( D  -  C
) ) )
3613, 35eqeltrd 2243 1  |-  ( ( ( A  e.  ( C..^ D )  /\  B  e.  ( C..^ D ) )  /\  A  <_  B )  -> 
( abs `  ( B  -  A )
)  e.  ( 0..^ ( D  -  C
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   RRcr 7752   0cc0 7753    < clt 7933    <_ cle 7934    - cmin 8069   ZZcz 9191  ..^cfzo 10077   abscabs 10939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-fzo 10078  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941
This theorem is referenced by:  fzomaxdif  11055
  Copyright terms: Public domain W3C validator