HomeHome Intuitionistic Logic Explorer
Theorem List (p. 102 of 162)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 10101-10200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremioossicc 10101 An open interval is a subset of its closure. (Contributed by Paul Chapman, 18-Oct-2007.)
 |-  ( A (,) B )  C_  ( A [,] B )
 
Theoremicossicc 10102 A closed-below, open-above interval is a subset of its closure. (Contributed by Thierry Arnoux, 25-Oct-2016.)
 |-  ( A [,) B )  C_  ( A [,] B )
 
Theoremiocssicc 10103 A closed-above, open-below interval is a subset of its closure. (Contributed by Thierry Arnoux, 1-Apr-2017.)
 |-  ( A (,] B )  C_  ( A [,] B )
 
Theoremioossico 10104 An open interval is a subset of its closure-below. (Contributed by Thierry Arnoux, 3-Mar-2017.)
 |-  ( A (,) B )  C_  ( A [,) B )
 
Theoremiocssioo 10105 Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A 
 <_  C  /\  D  <  B ) )  ->  ( C (,] D )  C_  ( A (,) B ) )
 
Theoremicossioo 10106 Condition for a closed interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 29-Mar-2017.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A  <  C  /\  D  <_  B ) )  ->  ( C [,) D ) 
 C_  ( A (,) B ) )
 
Theoremioossioo 10107 Condition for an open interval to be a subset of an open interval. (Contributed by Thierry Arnoux, 26-Sep-2017.)
 |-  ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( A 
 <_  C  /\  D  <_  B ) )  ->  ( C (,) D )  C_  ( A (,) B ) )
 
Theoremiccsupr 10108* A nonempty subset of a closed real interval satisfies the conditions for the existence of its supremum. To be useful without excluded middle, we'll probably need to change not equal to apart, and perhaps make other changes, but the theorem does hold as stated here. (Contributed by Paul Chapman, 21-Jan-2008.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  S  C_  ( A [,] B )  /\  C  e.  S )  ->  ( S  C_  RR  /\  S  =/=  (/)  /\  E. x  e.  RR  A. y  e.  S  y  <_  x ) )
 
Theoremelioopnf 10109 Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
 |-  ( A  e.  RR*  ->  ( B  e.  ( A (,) +oo )  <->  ( B  e.  RR  /\  A  <  B ) ) )
 
Theoremelioomnf 10110 Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
 |-  ( A  e.  RR*  ->  ( B  e.  ( -oo (,) A )  <->  ( B  e.  RR  /\  B  <  A ) ) )
 
Theoremelicopnf 10111 Membership in a closed unbounded interval of reals. (Contributed by Mario Carneiro, 16-Sep-2014.)
 |-  ( A  e.  RR  ->  ( B  e.  ( A [,) +oo )  <->  ( B  e.  RR  /\  A  <_  B ) ) )
 
Theoremrepos 10112 Two ways of saying that a real number is positive. (Contributed by NM, 7-May-2007.)
 |-  ( A  e.  (
 0 (,) +oo )  <->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremioof 10113 The set of open intervals of extended reals maps to subsets of reals. (Contributed by NM, 7-Feb-2007.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |- 
 (,) : ( RR*  X.  RR* )
 --> ~P RR
 
Theoremiccf 10114 The set of closed intervals of extended reals maps to subsets of extended reals. (Contributed by FL, 14-Jun-2007.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |- 
 [,] : ( RR*  X.  RR* )
 --> ~P RR*
 
Theoremunirnioo 10115 The union of the range of the open interval function. (Contributed by NM, 7-May-2007.) (Revised by Mario Carneiro, 30-Jan-2014.)
 |- 
 RR  =  U. ran  (,)
 
Theoremdfioo2 10116* Alternate definition of the set of open intervals of extended reals. (Contributed by NM, 1-Mar-2007.) (Revised by Mario Carneiro, 1-Sep-2015.)
 |- 
 (,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { w  e.  RR  |  ( x  <  w  /\  w  <  y ) } )
 
Theoremioorebasg 10117 Open intervals are elements of the set of all open intervals. (Contributed by Jim Kingdon, 4-Apr-2020.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR* )  ->  ( A (,) B )  e.  ran  (,) )
 
Theoremelrege0 10118 The predicate "is a nonnegative real". (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 18-Jun-2014.)
 |-  ( A  e.  (
 0 [,) +oo )  <->  ( A  e.  RR  /\  0  <_  A ) )
 
Theoremrge0ssre 10119 Nonnegative real numbers are real numbers. (Contributed by Thierry Arnoux, 9-Sep-2018.) (Proof shortened by AV, 8-Sep-2019.)
 |-  ( 0 [,) +oo )  C_  RR
 
Theoremelxrge0 10120 Elementhood in the set of nonnegative extended reals. (Contributed by Mario Carneiro, 28-Jun-2014.)
 |-  ( A  e.  (
 0 [,] +oo )  <->  ( A  e.  RR*  /\  0  <_  A ) )
 
Theorem0e0icopnf 10121 0 is a member of  ( 0 [,) +oo ) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  e.  ( 0 [,) +oo )
 
Theorem0e0iccpnf 10122 0 is a member of  ( 0 [,] +oo ) (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
 |-  0  e.  ( 0 [,] +oo )
 
Theoremge0addcl 10123 The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 19-Jun-2014.)
 |-  ( ( A  e.  ( 0 [,) +oo )  /\  B  e.  (
 0 [,) +oo ) ) 
 ->  ( A  +  B )  e.  ( 0 [,) +oo ) )
 
Theoremge0mulcl 10124 The nonnegative reals are closed under multiplication. (Contributed by Mario Carneiro, 19-Jun-2014.)
 |-  ( ( A  e.  ( 0 [,) +oo )  /\  B  e.  (
 0 [,) +oo ) ) 
 ->  ( A  x.  B )  e.  ( 0 [,) +oo ) )
 
Theoremge0xaddcl 10125 The nonnegative reals are closed under addition. (Contributed by Mario Carneiro, 26-Aug-2015.)
 |-  ( ( A  e.  ( 0 [,] +oo )  /\  B  e.  (
 0 [,] +oo ) ) 
 ->  ( A +e B )  e.  (
 0 [,] +oo ) )
 
Theoremlbicc2 10126 The lower bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.) (Revised by Mario Carneiro, 9-Sep-2015.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  A  e.  ( A [,] B ) )
 
Theoremubicc2 10127 The upper bound of a closed interval is a member of it. (Contributed by Paul Chapman, 26-Nov-2007.) (Revised by FL, 29-May-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  A  <_  B )  ->  B  e.  ( A [,] B ) )
 
Theorem0elunit 10128 Zero is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
 |-  0  e.  ( 0 [,] 1 )
 
Theorem1elunit 10129 One is an element of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
 |-  1  e.  ( 0 [,] 1 )
 
Theoremiooneg 10130 Membership in a negated open real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A (,) B )  <->  -u C  e.  ( -u B (,) -u A ) ) )
 
Theoremiccneg 10131 Membership in a negated closed real interval. (Contributed by Paul Chapman, 26-Nov-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( C  e.  ( A [,] B )  <->  -u C  e.  ( -u B [,] -u A ) ) )
 
Theoremicoshft 10132 A shifted real is a member of a shifted, closed-below, open-above real interval. (Contributed by Paul Chapman, 25-Mar-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( X  e.  ( A [,) B )  ->  ( X  +  C )  e.  ( ( A  +  C ) [,) ( B  +  C ) ) ) )
 
Theoremicoshftf1o 10133* Shifting a closed-below, open-above interval is one-to-one onto. (Contributed by Paul Chapman, 25-Mar-2008.) (Proof shortened by Mario Carneiro, 1-Sep-2015.)
 |-  F  =  ( x  e.  ( A [,) B )  |->  ( x  +  C ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  F :
 ( A [,) B )
 -1-1-onto-> ( ( A  +  C ) [,) ( B  +  C )
 ) )
 
Theoremicodisj 10134 End-to-end closed-below, open-above real intervals are disjoint. (Contributed by Mario Carneiro, 16-Jun-2014.)
 |-  ( ( A  e.  RR*  /\  B  e.  RR*  /\  C  e.  RR* )  ->  (
 ( A [,) B )  i^i  ( B [,) C ) )  =  (/) )
 
Theoremioodisj 10135 If the upper bound of one open interval is less than or equal to the lower bound of the other, the intervals are disjoint. (Contributed by Jeff Hankins, 13-Jul-2009.)
 |-  ( ( ( ( A  e.  RR*  /\  B  e.  RR* )  /\  ( C  e.  RR*  /\  D  e.  RR* ) )  /\  B  <_  C )  ->  ( ( A (,) B )  i^i  ( C (,) D ) )  =  (/) )
 
Theoremiccshftr 10136 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  +  R )  =  C   &    |-  ( B  +  R )  =  D   =>    |-  (
 ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  +  R )  e.  ( C [,] D ) ) )
 
Theoremiccshftri 10137 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  R  e.  RR   &    |-  ( A  +  R )  =  C   &    |-  ( B  +  R )  =  D   =>    |-  ( X  e.  ( A [,] B )  ->  ( X  +  R )  e.  ( C [,] D ) )
 
Theoremiccshftl 10138 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  -  R )  =  C   &    |-  ( B  -  R )  =  D   =>    |-  (
 ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  -  R )  e.  ( C [,] D ) ) )
 
Theoremiccshftli 10139 Membership in a shifted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  R  e.  RR   &    |-  ( A  -  R )  =  C   &    |-  ( B  -  R )  =  D   =>    |-  ( X  e.  ( A [,] B )  ->  ( X  -  R )  e.  ( C [,] D ) )
 
Theoremiccdil 10140 Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  x.  R )  =  C   &    |-  ( B  x.  R )  =  D   =>    |-  (
 ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  x.  R )  e.  ( C [,] D ) ) )
 
Theoremiccdili 10141 Membership in a dilated interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  R  e.  RR+   &    |-  ( A  x.  R )  =  C   &    |-  ( B  x.  R )  =  D   =>    |-  ( X  e.  ( A [,] B )  ->  ( X  x.  R )  e.  ( C [,] D ) )
 
Theoremicccntr 10142 Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  ( A  /  R )  =  C   &    |-  ( B  /  R )  =  D   =>    |-  (
 ( ( A  e.  RR  /\  B  e.  RR )  /\  ( X  e.  RR  /\  R  e.  RR+ ) )  ->  ( X  e.  ( A [,] B )  <->  ( X  /  R )  e.  ( C [,] D ) ) )
 
Theoremicccntri 10143 Membership in a contracted interval. (Contributed by Jeff Madsen, 2-Sep-2009.)
 |-  A  e.  RR   &    |-  B  e.  RR   &    |-  R  e.  RR+   &    |-  ( A  /  R )  =  C   &    |-  ( B  /  R )  =  D   =>    |-  ( X  e.  ( A [,] B )  ->  ( X  /  R )  e.  ( C [,] D ) )
 
Theoremdivelunit 10144 A condition for a ratio to be a member of the closed unit. (Contributed by Scott Fenton, 11-Jun-2013.)
 |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( B  e.  RR  /\  0  <  B ) )  ->  ( ( A  /  B )  e.  (
 0 [,] 1 )  <->  A  <_  B ) )
 
Theoremlincmb01cmp 10145 A linear combination of two reals which lies in the interval between them. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 8-Sep-2015.)
 |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  /\  T  e.  ( 0 [,] 1
 ) )  ->  (
 ( ( 1  -  T )  x.  A )  +  ( T  x.  B ) )  e.  ( A [,] B ) )
 
Theoremiccf1o 10146* Describe a bijection from  [ 0 ,  1 ] to an arbitrary nontrivial closed interval  [ A ,  B ]. (Contributed by Mario Carneiro, 8-Sep-2015.)
 |-  F  =  ( x  e.  ( 0 [,] 1 )  |->  ( ( x  x.  B )  +  ( ( 1  -  x )  x.  A ) ) )   =>    |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) 
 ->  ( F : ( 0 [,] 1 ) -1-1-onto-> ( A [,] B ) 
 /\  `' F  =  (
 y  e.  ( A [,] B )  |->  ( ( y  -  A )  /  ( B  -  A ) ) ) ) )
 
Theoremunitssre 10147  ( 0 [,] 1 ) is a subset of the reals. (Contributed by David Moews, 28-Feb-2017.)
 |-  ( 0 [,] 1
 )  C_  RR
 
Theoremiccen 10148 Any nontrivial closed interval is equinumerous to the unit interval. (Contributed by Mario Carneiro, 26-Jul-2014.) (Revised by Mario Carneiro, 8-Sep-2015.)
 |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B ) 
 ->  ( 0 [,] 1
 )  ~~  ( A [,] B ) )
 
Theoremzltaddlt1le 10149 The sum of an integer and a real number between 0 and 1 is less than or equal to a second integer iff the sum is less than the second integer. (Contributed by AV, 1-Jul-2021.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  A  e.  ( 0 (,) 1 ) ) 
 ->  ( ( M  +  A )  <  N  <->  ( M  +  A )  <_  N ) )
 
4.5.4  Finite intervals of integers
 
Syntaxcfz 10150 Extend class notation to include the notation for a contiguous finite set of integers. Read " M ... N " as "the set of integers from  M to  N inclusive".

This symbol is also used informally in some comments to denote an ellipsis, e.g.,  A  +  A ^ 2  +  ...  +  A ^ ( N  -  1 ).

 class  ...
 
Definitiondf-fz 10151* Define an operation that produces a finite set of sequential integers. Read " M ... N " as "the set of integers from  M to  N inclusive". See fzval 10152 for its value and additional comments. (Contributed by NM, 6-Sep-2005.)
 |- 
 ...  =  ( m  e.  ZZ ,  n  e. 
 ZZ  |->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) } )
 
Theoremfzval 10152* The value of a finite set of sequential integers. E.g.,  2 ... 5 means the set  { 2 ,  3 ,  4 ,  5 }. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where  NNk means our  1 ... k; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  =  { k  e.  ZZ  |  ( M 
 <_  k  /\  k  <_  N ) } )
 
Theoremfzval2 10153 An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  =  ( ( M [,] N )  i^i  ZZ ) )
 
Theoremfzf 10154 Establish the domain and codomain of the finite integer sequence function. (Contributed by Scott Fenton, 8-Aug-2013.) (Revised by Mario Carneiro, 16-Nov-2013.)
 |- 
 ... : ( ZZ  X.  ZZ ) --> ~P ZZ
 
Theoremelfz1 10155 Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <-> 
 ( K  e.  ZZ  /\  M  <_  K  /\  K  <_  N ) ) )
 
Theoremelfz 10156 Membership in a finite set of sequential integers. (Contributed by NM, 29-Sep-2005.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  ( M  <_  K 
 /\  K  <_  N ) ) )
 
Theoremelfz2 10157 Membership in a finite set of sequential integers. We use the fact that an operation's value is empty outside of its domain to show  M  e.  ZZ and  N  e.  ZZ. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  <->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M 
 <_  K  /\  K  <_  N ) ) )
 
Theoremelfzd 10158 Membership in a finite set of sequential integers. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
 |-  ( ph  ->  M  e.  ZZ )   &    |-  ( ph  ->  N  e.  ZZ )   &    |-  ( ph  ->  K  e.  ZZ )   &    |-  ( ph  ->  M  <_  K )   &    |-  ( ph  ->  K 
 <_  N )   =>    |-  ( ph  ->  K  e.  ( M ... N ) )
 
Theoremelfz5 10159 Membership in a finite set of sequential integers. (Contributed by NM, 26-Dec-2005.)
 |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ZZ )  ->  ( K  e.  ( M ... N )  <->  K  <_  N ) )
 
Theoremelfz4 10160 Membership in a finite set of sequential integers. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  ( M 
 <_  K  /\  K  <_  N ) )  ->  K  e.  ( M ... N ) )
 
Theoremelfzuzb 10161 Membership in a finite set of sequential integers in terms of sets of upper integers. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  <->  ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) ) )
 
Theoremeluzfz 10162 Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( ( K  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  ->  K  e.  ( M ... N ) )
 
Theoremelfzuz 10163 A member of a finite set of sequential integers belongs to an upper set of integers. (Contributed by NM, 17-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  K  e.  ( ZZ>= `  M ) )
 
Theoremelfzuz3 10164 Membership in a finite set of sequential integers implies membership in an upper set of integers. (Contributed by NM, 28-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  K ) )
 
Theoremelfzel2 10165 Membership in a finite set of sequential integer implies the upper bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
 
Theoremelfzel1 10166 Membership in a finite set of sequential integer implies the lower bound is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
 
Theoremelfzelz 10167 A member of a finite set of sequential integer is an integer. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  K  e.  ZZ )
 
Theoremelfzelzd 10168 A member of a finite set of sequential integers is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ph  ->  K  e.  ( M ... N ) )   =>    |-  ( ph  ->  K  e.  ZZ )
 
Theoremelfzle1 10169 A member of a finite set of sequential integer is greater than or equal to the lower bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  M  <_  K )
 
Theoremelfzle2 10170 A member of a finite set of sequential integer is less than or equal to the upper bound. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  K  <_  N )
 
Theoremelfzuz2 10171 Implication of membership in a finite set of sequential integers. (Contributed by NM, 20-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  N  e.  ( ZZ>= `  M ) )
 
Theoremelfzle3 10172 Membership in a finite set of sequential integer implies the bounds are comparable. (Contributed by NM, 18-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  M  <_  N )
 
Theoremeluzfz1 10173 Membership in a finite set of sequential integers - special case. (Contributed by NM, 21-Jul-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  M  e.  ( M ... N ) )
 
Theoremeluzfz2 10174 Membership in a finite set of sequential integers - special case. (Contributed by NM, 13-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( N  e.  ( ZZ>=
 `  M )  ->  N  e.  ( M ... N ) )
 
Theoremeluzfz2b 10175 Membership in a finite set of sequential integers - special case. (Contributed by NM, 14-Sep-2005.)
 |-  ( N  e.  ( ZZ>=
 `  M )  <->  N  e.  ( M ... N ) )
 
Theoremelfz3 10176 Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 21-Jul-2005.)
 |-  ( N  e.  ZZ  ->  N  e.  ( N
 ... N ) )
 
Theoremelfz1eq 10177 Membership in a finite set of sequential integers containing one integer. (Contributed by NM, 19-Sep-2005.)
 |-  ( K  e.  ( N ... N )  ->  K  =  N )
 
Theoremelfzubelfz 10178 If there is a member in a finite set of sequential integers, the upper bound is also a member of this finite set of sequential integers. (Contributed by Alexander van der Vekens, 31-May-2018.)
 |-  ( K  e.  ( M ... N )  ->  N  e.  ( M ... N ) )
 
Theorempeano2fzr 10179 A Peano-postulate-like theorem for downward closure of a finite set of sequential integers. (Contributed by Mario Carneiro, 27-May-2014.)
 |-  ( ( K  e.  ( ZZ>= `  M )  /\  ( K  +  1 )  e.  ( M
 ... N ) ) 
 ->  K  e.  ( M
 ... N ) )
 
Theoremfzm 10180* Properties of a finite interval of integers which is inhabited. (Contributed by Jim Kingdon, 15-Apr-2020.)
 |-  ( E. x  x  e.  ( M ... N )  <->  N  e.  ( ZZ>=
 `  M ) )
 
Theoremfztri3or 10181 Trichotomy in terms of a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  <  M  \/  K  e.  ( M
 ... N )  \/  N  <  K ) )
 
Theoremfzdcel 10182 Decidability of membership in a finite interval of integers. (Contributed by Jim Kingdon, 1-Jun-2020.)
 |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  K  e.  ( M ... N ) )
 
Theoremfznlem 10183 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by Jim Kingdon, 16-Apr-2020.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M 
 ->  ( M ... N )  =  (/) ) )
 
Theoremfzn 10184 A finite set of sequential integers is empty if the bounds are reversed. (Contributed by NM, 22-Aug-2005.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( N  <  M  <-> 
 ( M ... N )  =  (/) ) )
 
Theoremfzen 10185 A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
 |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K ) ) )
 
Theoremfz1n 10186 A 1-based finite set of sequential integers is empty iff it ends at index  0. (Contributed by Paul Chapman, 22-Jun-2011.)
 |-  ( N  e.  NN0  ->  ( ( 1 ...
 N )  =  (/)  <->  N  =  0 ) )
 
Theorem0fz1 10187 Two ways to say a finite 1-based sequence is empty. (Contributed by Paul Chapman, 26-Oct-2012.)
 |-  ( ( N  e.  NN0  /\  F  Fn  ( 1
 ... N ) ) 
 ->  ( F  =  (/)  <->  N  =  0 ) )
 
Theoremfz10 10188 There are no integers between 1 and 0. (Contributed by Jeff Madsen, 16-Jun-2010.) (Proof shortened by Mario Carneiro, 28-Apr-2015.)
 |-  ( 1 ... 0
 )  =  (/)
 
Theoremuzsubsubfz 10189 Membership of an integer greater than L decreased by ( L - M ) in an M based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
 |-  ( ( L  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  L ) )  ->  ( N  -  ( L  -  M ) )  e.  ( M ... N ) )
 
Theoremuzsubsubfz1 10190 Membership of an integer greater than L decreased by ( L - 1 ) in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
 |-  ( ( L  e.  NN  /\  N  e.  ( ZZ>=
 `  L ) ) 
 ->  ( N  -  ( L  -  1 ) )  e.  ( 1 ...
 N ) )
 
Theoremige3m2fz 10191 Membership of an integer greater than 2 decreased by 2 in a 1 based finite set of sequential integers. (Contributed by Alexander van der Vekens, 14-Sep-2018.)
 |-  ( N  e.  ( ZZ>=
 `  3 )  ->  ( N  -  2
 )  e.  ( 1
 ... N ) )
 
Theoremfzsplit2 10192 Split a finite interval of integers into two parts. (Contributed by Mario Carneiro, 13-Apr-2016.)
 |-  ( ( ( K  +  1 )  e.  ( ZZ>= `  M )  /\  N  e.  ( ZZ>= `  K ) )  ->  ( M ... N )  =  ( ( M
 ... K )  u.  ( ( K  +  1 ) ... N ) ) )
 
Theoremfzsplit 10193 Split a finite interval of integers into two parts. (Contributed by Jeff Madsen, 17-Jun-2010.) (Revised by Mario Carneiro, 13-Apr-2016.)
 |-  ( K  e.  ( M ... N )  ->  ( M ... N )  =  ( ( M
 ... K )  u.  ( ( K  +  1 ) ... N ) ) )
 
Theoremfzdisj 10194 Condition for two finite intervals of integers to be disjoint. (Contributed by Jeff Madsen, 17-Jun-2010.)
 |-  ( K  <  M  ->  ( ( J ... K )  i^i  ( M
 ... N ) )  =  (/) )
 
Theoremfz01en 10195 0-based and 1-based finite sets of sequential integers are equinumerous. (Contributed by Paul Chapman, 11-Apr-2009.)
 |-  ( N  e.  ZZ  ->  ( 0 ... ( N  -  1 ) ) 
 ~~  ( 1 ...
 N ) )
 
Theoremelfznn 10196 A member of a finite set of sequential integers starting at 1 is a positive integer. (Contributed by NM, 24-Aug-2005.)
 |-  ( K  e.  (
 1 ... N )  ->  K  e.  NN )
 
Theoremelfz1end 10197 A nonempty finite range of integers contains its end point. (Contributed by Stefan O'Rear, 10-Oct-2014.)
 |-  ( A  e.  NN  <->  A  e.  ( 1 ... A ) )
 
Theoremfz1ssnn 10198 A finite set of positive integers is a set of positive integers. (Contributed by Stefan O'Rear, 16-Oct-2014.)
 |-  ( 1 ... A )  C_  NN
 
Theoremfznn0sub 10199 Subtraction closure for a member of a finite set of sequential integers. (Contributed by NM, 16-Sep-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
 |-  ( K  e.  ( M ... N )  ->  ( N  -  K )  e.  NN0 )
 
Theoremfzmmmeqm 10200 Subtracting the difference of a member of a finite range of integers and the lower bound of the range from the difference of the upper bound and the lower bound of the range results in the difference of the upper bound of the range and the member. (Contributed by Alexander van der Vekens, 27-May-2018.)
 |-  ( M  e.  ( L ... N )  ->  ( ( N  -  L )  -  ( M  -  L ) )  =  ( N  -  M ) )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16164
  Copyright terms: Public domain < Previous  Next >