ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoaddel Unicode version

Theorem fzoaddel 9523
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzoaddel  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) ) )

Proof of Theorem fzoaddel
StepHypRef Expression
1 elfzoel1 9476 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
21adantr 270 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
32zred 8793 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  RR )
4 elfzoelz 9478 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
54adantr 270 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
65zred 8793 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  RR )
7 simpr 108 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
87zred 8793 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  RR )
9 elfzole1 9486 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  B  <_  A )
109adantr 270 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  <_  A )
113, 6, 8, 10leadd1dd 7969 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( B  +  D )  <_  ( A  +  D
) )
12 elfzoel2 9477 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
1312adantr 270 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
1413zred 8793 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  RR )
15 elfzolt2 9487 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  A  <  C )
1615adantr 270 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  <  C )
176, 14, 8, 16ltadd1dd 7966 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  <  ( C  +  D
) )
18 zaddcl 8715 . . . 4  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ )  ->  ( A  +  D
)  e.  ZZ )
194, 18sylan 277 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ZZ )
20 zaddcl 8715 . . . 4  |-  ( ( B  e.  ZZ  /\  D  e.  ZZ )  ->  ( B  +  D
)  e.  ZZ )
211, 20sylan 277 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( B  +  D )  e.  ZZ )
22 zaddcl 8715 . . . 4  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  D
)  e.  ZZ )
2312, 22sylan 277 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( C  +  D )  e.  ZZ )
24 elfzo 9480 . . 3  |-  ( ( ( A  +  D
)  e.  ZZ  /\  ( B  +  D
)  e.  ZZ  /\  ( C  +  D
)  e.  ZZ )  ->  ( ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) )  <->  ( ( B  +  D )  <_  ( A  +  D
)  /\  ( A  +  D )  <  ( C  +  D )
) ) )
2519, 21, 23, 24syl3anc 1172 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  +  D
)  e.  ( ( B  +  D )..^ ( C  +  D
) )  <->  ( ( B  +  D )  <_  ( A  +  D
)  /\  ( A  +  D )  <  ( C  +  D )
) ) )
2611, 17, 25mpbir2and 888 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    e. wcel 1436   class class class wbr 3819  (class class class)co 5606    + caddc 7289    < clt 7458    <_ cle 7459   ZZcz 8675  ..^cfzo 9473
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3930  ax-pow 3982  ax-pr 4008  ax-un 4232  ax-setind 4324  ax-cnex 7372  ax-resscn 7373  ax-1cn 7374  ax-1re 7375  ax-icn 7376  ax-addcl 7377  ax-addrcl 7378  ax-mulcl 7379  ax-addcom 7381  ax-addass 7383  ax-distr 7385  ax-i2m1 7386  ax-0lt1 7387  ax-0id 7389  ax-rnegex 7390  ax-cnre 7392  ax-pre-ltirr 7393  ax-pre-ltwlin 7394  ax-pre-lttrn 7395  ax-pre-ltadd 7397
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-pw 3416  df-sn 3436  df-pr 3437  df-op 3439  df-uni 3636  df-int 3671  df-iun 3714  df-br 3820  df-opab 3874  df-mpt 3875  df-id 4092  df-xp 4415  df-rel 4416  df-cnv 4417  df-co 4418  df-dm 4419  df-rn 4420  df-res 4421  df-ima 4422  df-iota 4942  df-fun 4979  df-fn 4980  df-f 4981  df-fv 4985  df-riota 5562  df-ov 5609  df-oprab 5610  df-mpt2 5611  df-1st 5861  df-2nd 5862  df-pnf 7460  df-mnf 7461  df-xr 7462  df-ltxr 7463  df-le 7464  df-sub 7591  df-neg 7592  df-inn 8350  df-n0 8599  df-z 8676  df-uz 8944  df-fz 9349  df-fzo 9474
This theorem is referenced by:  fzoaddel2  9524  fzosubel  9525  fzofzp1  9558  fzostep1  9568
  Copyright terms: Public domain W3C validator