ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ellimc3ap Unicode version

Theorem ellimc3ap 15166
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
Hypotheses
Ref Expression
ellimc3.f  |-  ( ph  ->  F : A --> CC )
ellimc3.a  |-  ( ph  ->  A  C_  CC )
ellimc3.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
ellimc3ap  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
Distinct variable groups:    z, A    x, B, y, z    x, C, y, z    x, F, y    ph, x, y    z, F
Allowed substitution hints:    ph( z)    A( x, y)

Proof of Theorem ellimc3ap
StepHypRef Expression
1 ellimc3.f . 2  |-  ( ph  ->  F : A --> CC )
2 ellimc3.a . 2  |-  ( ph  ->  A  C_  CC )
3 ellimc3.b . 2  |-  ( ph  ->  B  e.  CC )
4 nfcv 2348 . 2  |-  F/_ z F
51, 2, 3, 4ellimc3apf 15165 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2176   A.wral 2484   E.wrex 2485    C_ wss 3166   class class class wbr 4045   -->wf 5268   ` cfv 5272  (class class class)co 5946   CCcc 7925    < clt 8109    - cmin 8245   # cap 8656   RR+crp 9777   abscabs 11341   lim CC climc 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-pm 6740  df-limced 15161
This theorem is referenced by:  limcdifap  15167  limcimolemlt  15169  limcimo  15170  limcresi  15171  cnplimcim  15172  cnplimclemr  15174  limccnpcntop  15180  dveflem  15231
  Copyright terms: Public domain W3C validator