ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ellimc3ap Unicode version

Theorem ellimc3ap 12990
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
Hypotheses
Ref Expression
ellimc3.f  |-  ( ph  ->  F : A --> CC )
ellimc3.a  |-  ( ph  ->  A  C_  CC )
ellimc3.b  |-  ( ph  ->  B  e.  CC )
Assertion
Ref Expression
ellimc3ap  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
Distinct variable groups:    z, A    x, B, y, z    x, C, y, z    x, F, y    ph, x, y    z, F
Allowed substitution hints:    ph( z)    A( x, y)

Proof of Theorem ellimc3ap
StepHypRef Expression
1 ellimc3.f . 2  |-  ( ph  ->  F : A --> CC )
2 ellimc3.a . 2  |-  ( ph  ->  A  C_  CC )
3 ellimc3.b . 2  |-  ( ph  ->  B  e.  CC )
4 nfcv 2299 . 2  |-  F/_ z F
51, 2, 3, 4ellimc3apf 12989 1  |-  ( ph  ->  ( C  e.  ( F lim CC  B )  <-> 
( C  e.  CC  /\ 
A. x  e.  RR+  E. y  e.  RR+  A. z  e.  A  ( (
z #  B  /\  ( abs `  ( z  -  B ) )  < 
y )  ->  ( abs `  ( ( F `
 z )  -  C ) )  < 
x ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2128   A.wral 2435   E.wrex 2436    C_ wss 3102   class class class wbr 3965   -->wf 5163   ` cfv 5167  (class class class)co 5818   CCcc 7713    < clt 7895    - cmin 8029   # cap 8439   RR+crp 9542   abscabs 10879   lim CC climc 12983
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4134  ax-pr 4168  ax-un 4392  ax-setind 4494  ax-cnex 7806
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-rab 2444  df-v 2714  df-sbc 2938  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-id 4252  df-xp 4589  df-rel 4590  df-cnv 4591  df-co 4592  df-dm 4593  df-rn 4594  df-iota 5132  df-fun 5169  df-fn 5170  df-f 5171  df-fv 5175  df-ov 5821  df-oprab 5822  df-mpo 5823  df-pm 6589  df-limced 12985
This theorem is referenced by:  limcdifap  12991  limcimolemlt  12993  limcimo  12994  limcresi  12995  cnplimcim  12996  cnplimclemr  12998  limccnpcntop  13004  dveflem  13047
  Copyright terms: Public domain W3C validator