Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ellimc3ap | GIF version |
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.) |
Ref | Expression |
---|---|
ellimc3.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
ellimc3.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
ellimc3.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
ellimc3ap | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimc3.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | ellimc3.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
3 | ellimc3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | nfcv 2299 | . 2 ⊢ Ⅎ𝑧𝐹 | |
5 | 1, 2, 3, 4 | ellimc3apf 12989 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 ∈ wcel 2128 ∀wral 2435 ∃wrex 2436 ⊆ wss 3102 class class class wbr 3965 ⟶wf 5163 ‘cfv 5167 (class class class)co 5818 ℂcc 7713 < clt 7895 − cmin 8029 # cap 8439 ℝ+crp 9542 abscabs 10879 limℂ climc 12983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-ov 5821 df-oprab 5822 df-mpo 5823 df-pm 6589 df-limced 12985 |
This theorem is referenced by: limcdifap 12991 limcimolemlt 12993 limcimo 12994 limcresi 12995 cnplimcim 12996 cnplimclemr 12998 limccnpcntop 13004 dveflem 13047 |
Copyright terms: Public domain | W3C validator |