| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ellimc3ap | GIF version | ||
| Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| ellimc3.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| ellimc3.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| ellimc3.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| ellimc3ap | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimc3.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | ellimc3.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 3 | ellimc3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | nfcv 2372 | . 2 ⊢ Ⅎ𝑧𝐹 | |
| 5 | 1, 2, 3, 4 | ellimc3apf 15334 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2200 ∀wral 2508 ∃wrex 2509 ⊆ wss 3197 class class class wbr 4083 ⟶wf 5314 ‘cfv 5318 (class class class)co 6001 ℂcc 7997 < clt 8181 − cmin 8317 # cap 8728 ℝ+crp 9849 abscabs 11508 limℂ climc 15328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pm 6798 df-limced 15330 |
| This theorem is referenced by: limcdifap 15336 limcimolemlt 15338 limcimo 15339 limcresi 15340 cnplimcim 15341 cnplimclemr 15343 limccnpcntop 15349 dveflem 15400 |
| Copyright terms: Public domain | W3C validator |