ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ellimc3ap GIF version

Theorem ellimc3ap 13424
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.)
Hypotheses
Ref Expression
ellimc3.f (𝜑𝐹:𝐴⟶ℂ)
ellimc3.a (𝜑𝐴 ⊆ ℂ)
ellimc3.b (𝜑𝐵 ∈ ℂ)
Assertion
Ref Expression
ellimc3ap (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Distinct variable groups:   𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧   𝑥,𝐹,𝑦   𝜑,𝑥,𝑦   𝑧,𝐹
Allowed substitution hints:   𝜑(𝑧)   𝐴(𝑥,𝑦)

Proof of Theorem ellimc3ap
StepHypRef Expression
1 ellimc3.f . 2 (𝜑𝐹:𝐴⟶ℂ)
2 ellimc3.a . 2 (𝜑𝐴 ⊆ ℂ)
3 ellimc3.b . 2 (𝜑𝐵 ∈ ℂ)
4 nfcv 2312 . 2 𝑧𝐹
51, 2, 3, 4ellimc3apf 13423 1 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑦 ∈ ℝ+𝑧𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧𝐵)) < 𝑦) → (abs‘((𝐹𝑧) − 𝐶)) < 𝑥))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wcel 2141  wral 2448  wrex 2449  wss 3121   class class class wbr 3989  wf 5194  cfv 5198  (class class class)co 5853  cc 7772   < clt 7954  cmin 8090   # cap 8500  +crp 9610  abscabs 10961   lim climc 13417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-cnex 7865
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-rab 2457  df-v 2732  df-sbc 2956  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-fv 5206  df-ov 5856  df-oprab 5857  df-mpo 5858  df-pm 6629  df-limced 13419
This theorem is referenced by:  limcdifap  13425  limcimolemlt  13427  limcimo  13428  limcresi  13429  cnplimcim  13430  cnplimclemr  13432  limccnpcntop  13438  dveflem  13481
  Copyright terms: Public domain W3C validator