![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ellimc3ap | GIF version |
Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.) |
Ref | Expression |
---|---|
ellimc3.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
ellimc3.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
ellimc3.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
Ref | Expression |
---|---|
ellimc3ap | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellimc3.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
2 | ellimc3.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
3 | ellimc3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
4 | nfcv 2336 | . 2 ⊢ Ⅎ𝑧𝐹 | |
5 | 1, 2, 3, 4 | ellimc3apf 14814 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2164 ∀wral 2472 ∃wrex 2473 ⊆ wss 3153 class class class wbr 4029 ⟶wf 5250 ‘cfv 5254 (class class class)co 5918 ℂcc 7870 < clt 8054 − cmin 8190 # cap 8600 ℝ+crp 9719 abscabs 11141 limℂ climc 14808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-rab 2481 df-v 2762 df-sbc 2986 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pm 6705 df-limced 14810 |
This theorem is referenced by: limcdifap 14816 limcimolemlt 14818 limcimo 14819 limcresi 14820 cnplimcim 14821 cnplimclemr 14823 limccnpcntop 14829 dveflem 14872 |
Copyright terms: Public domain | W3C validator |