| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ellimc3ap | GIF version | ||
| Description: Write the epsilon-delta definition of a limit. (Contributed by Mario Carneiro, 28-Dec-2016.) Use apartness. (Revised by Jim Kingdon, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| ellimc3.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
| ellimc3.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
| ellimc3.b | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| Ref | Expression |
|---|---|
| ellimc3ap | ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellimc3.f | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
| 2 | ellimc3.a | . 2 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
| 3 | ellimc3.b | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 4 | nfcv 2348 | . 2 ⊢ Ⅎ𝑧𝐹 | |
| 5 | 1, 2, 3, 4 | ellimc3apf 15132 | 1 ⊢ (𝜑 → (𝐶 ∈ (𝐹 limℂ 𝐵) ↔ (𝐶 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℝ+ ∀𝑧 ∈ 𝐴 ((𝑧 # 𝐵 ∧ (abs‘(𝑧 − 𝐵)) < 𝑦) → (abs‘((𝐹‘𝑧) − 𝐶)) < 𝑥)))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2176 ∀wral 2484 ∃wrex 2485 ⊆ wss 3166 class class class wbr 4044 ⟶wf 5267 ‘cfv 5271 (class class class)co 5944 ℂcc 7923 < clt 8107 − cmin 8243 # cap 8654 ℝ+crp 9775 abscabs 11308 limℂ climc 15126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 df-pm 6738 df-limced 15128 |
| This theorem is referenced by: limcdifap 15134 limcimolemlt 15136 limcimo 15137 limcresi 15138 cnplimcim 15139 cnplimclemr 15141 limccnpcntop 15147 dveflem 15198 |
| Copyright terms: Public domain | W3C validator |