ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzuzle Unicode version

Theorem eluzuzle 9027
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
Assertion
Ref Expression
eluzuzle  |-  ( ( B  e.  ZZ  /\  B  <_  A )  -> 
( C  e.  (
ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )

Proof of Theorem eluzuzle
StepHypRef Expression
1 eluz2 9025 . 2  |-  ( C  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )
2 simpll 496 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  e.  ZZ )
3 simpr2 950 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  C  e.  ZZ )
4 zre 8754 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
54ad2antrr 472 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  e.  RR )
6 zre 8754 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  RR )
763ad2ant1 964 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C )  ->  A  e.  RR )
87adantl 271 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  A  e.  RR )
9 zre 8754 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  RR )
1093ad2ant2 965 . . . . . 6  |-  ( ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C )  ->  C  e.  RR )
1110adantl 271 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  C  e.  RR )
12 simplr 497 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  <_  A
)
13 simpr3 951 . . . . 5  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  A  <_  C
)
145, 8, 11, 12, 13letrd 7607 . . . 4  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  B  <_  C
)
15 eluz2 9025 . . . 4  |-  ( C  e.  ( ZZ>= `  B
)  <->  ( B  e.  ZZ  /\  C  e.  ZZ  /\  B  <_  C ) )
162, 3, 14, 15syl3anbrc 1127 . . 3  |-  ( ( ( B  e.  ZZ  /\  B  <_  A )  /\  ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C ) )  ->  C  e.  (
ZZ>= `  B ) )
1716ex 113 . 2  |-  ( ( B  e.  ZZ  /\  B  <_  A )  -> 
( ( A  e.  ZZ  /\  C  e.  ZZ  /\  A  <_  C )  ->  C  e.  ( ZZ>= `  B )
) )
181, 17syl5bi 150 1  |-  ( ( B  e.  ZZ  /\  B  <_  A )  -> 
( C  e.  (
ZZ>= `  A )  ->  C  e.  ( ZZ>= `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 924    e. wcel 1438   class class class wbr 3845   ` cfv 5015   RRcr 7349    <_ cle 7523   ZZcz 8750   ZZ>=cuz 9019
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3957  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-cnex 7436  ax-resscn 7437  ax-pre-ltwlin 7458
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-rab 2368  df-v 2621  df-sbc 2841  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-br 3846  df-opab 3900  df-mpt 3901  df-id 4120  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-fv 5023  df-ov 5655  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-neg 7656  df-z 8751  df-uz 9020
This theorem is referenced by:  eluz2nn  9057  uzuzle23  9059  eluzge3nn  9060
  Copyright terms: Public domain W3C validator