Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > eluzuzle | Unicode version |
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
Ref | Expression |
---|---|
eluzuzle |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluz2 9439 | . 2 | |
2 | simpll 519 | . . . 4 | |
3 | simpr2 989 | . . . 4 | |
4 | zre 9165 | . . . . . 6 | |
5 | 4 | ad2antrr 480 | . . . . 5 |
6 | zre 9165 | . . . . . . 7 | |
7 | 6 | 3ad2ant1 1003 | . . . . . 6 |
8 | 7 | adantl 275 | . . . . 5 |
9 | zre 9165 | . . . . . . 7 | |
10 | 9 | 3ad2ant2 1004 | . . . . . 6 |
11 | 10 | adantl 275 | . . . . 5 |
12 | simplr 520 | . . . . 5 | |
13 | simpr3 990 | . . . . 5 | |
14 | 5, 8, 11, 12, 13 | letrd 7993 | . . . 4 |
15 | eluz2 9439 | . . . 4 | |
16 | 2, 3, 14, 15 | syl3anbrc 1166 | . . 3 |
17 | 16 | ex 114 | . 2 |
18 | 1, 17 | syl5bi 151 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 wcel 2128 class class class wbr 3965 cfv 5169 cr 7725 cle 7907 cz 9161 cuz 9433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-cnex 7817 ax-resscn 7818 ax-pre-ltwlin 7839 |
This theorem depends on definitions: df-bi 116 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-sbc 2938 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-fv 5177 df-ov 5824 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-neg 8043 df-z 9162 df-uz 9434 |
This theorem is referenced by: eluz2nn 9471 eluz4eluz2 9472 uzuzle23 9476 eluzge3nn 9477 |
Copyright terms: Public domain | W3C validator |