| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz2nn | Unicode version | ||
| Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
| Ref | Expression |
|---|---|
| eluz2nn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9472 |
. . 3
| |
| 2 | 1le2 9319 |
. . 3
| |
| 3 | eluzuzle 9730 |
. . 3
| |
| 4 | 1, 2, 3 | mp2an 426 |
. 2
|
| 5 | nnuz 9758 |
. 2
| |
| 6 | 4, 5 | eleqtrrdi 2323 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-addcom 8099 ax-addass 8101 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-0id 8107 ax-rnegex 8108 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-ltadd 8115 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-inn 9111 df-2 9169 df-z 9447 df-uz 9723 |
| This theorem is referenced by: eluz4nn 9763 eluzge2nn0 9764 eluz2n0 9765 elnn1uz2 9802 zgt1rpn0n1 9891 modm1div 12311 isprm3 12640 isprm4 12641 prmind2 12642 nprm 12645 exprmfct 12660 prmdvdsfz 12661 isprm5lem 12663 isprm6 12669 phibndlem 12738 phibnd 12739 dfphi2 12742 pclemub 12810 pcprendvds2 12814 pcpre1 12815 dvdsprmpweqnn 12859 expnprm 12876 4sqlem15 12928 4sqlem16 12929 infpn2 13027 logbrec 15634 logbgcd1irr 15641 logbgcd1irraplemexp 15642 logbgcd1irraplemap 15643 mersenne 15671 lgsquad2lem2 15761 2sqlem6 15799 |
| Copyright terms: Public domain | W3C validator |