ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2nn Unicode version

Theorem eluz2nn 9640
Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
eluz2nn  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )

Proof of Theorem eluz2nn
StepHypRef Expression
1 1z 9352 . . 3  |-  1  e.  ZZ
2 1le2 9199 . . 3  |-  1  <_  2
3 eluzuzle 9609 . . 3  |-  ( ( 1  e.  ZZ  /\  1  <_  2 )  -> 
( A  e.  (
ZZ>= `  2 )  ->  A  e.  ( ZZ>= ` 
1 ) ) )
41, 2, 3mp2an 426 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  ( ZZ>= `  1 )
)
5 nnuz 9637 . 2  |-  NN  =  ( ZZ>= `  1 )
64, 5eleqtrrdi 2290 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  A  e.  NN )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2167   class class class wbr 4033   ` cfv 5258   1c1 7880    <_ cle 8062   NNcn 8990   2c2 9041   ZZcz 9326   ZZ>=cuz 9601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-2 9049  df-z 9327  df-uz 9602
This theorem is referenced by:  eluz4nn  9642  eluzge2nn0  9643  eluz2n0  9644  elnn1uz2  9681  zgt1rpn0n1  9770  modm1div  11965  isprm3  12286  isprm4  12287  prmind2  12288  nprm  12291  exprmfct  12306  prmdvdsfz  12307  isprm5lem  12309  isprm6  12315  phibndlem  12384  phibnd  12385  dfphi2  12388  pclemub  12456  pcprendvds2  12460  pcpre1  12461  dvdsprmpweqnn  12505  expnprm  12522  4sqlem15  12574  4sqlem16  12575  infpn2  12673  logbrec  15196  logbgcd1irr  15203  logbgcd1irraplemexp  15204  logbgcd1irraplemap  15205  mersenne  15233  lgsquad2lem2  15323  2sqlem6  15361
  Copyright terms: Public domain W3C validator