ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzuzle GIF version

Theorem eluzuzle 8922
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
Assertion
Ref Expression
eluzuzle ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))

Proof of Theorem eluzuzle
StepHypRef Expression
1 eluz2 8920 . 2 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
2 simpll 496 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
3 simpr2 946 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
4 zre 8650 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
54ad2antrr 472 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℝ)
6 zre 8650 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
763ad2ant1 960 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐴 ∈ ℝ)
87adantl 271 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴 ∈ ℝ)
9 zre 8650 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
1093ad2ant2 961 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
1110adantl 271 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℝ)
12 simplr 497 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐴)
13 simpr3 947 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴𝐶)
145, 8, 11, 12, 13letrd 7510 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐶)
15 eluz2 8920 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
162, 3, 14, 15syl3anbrc 1123 . . 3 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ (ℤ𝐵))
1716ex 113 . 2 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ (ℤ𝐵)))
181, 17syl5bi 150 1 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920  wcel 1434   class class class wbr 3811  cfv 4969  cr 7252  cle 7426  cz 8646  cuz 8914
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000  ax-un 4224  ax-setind 4316  ax-cnex 7339  ax-resscn 7340  ax-pre-ltwlin 7361
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2614  df-sbc 2827  df-dif 2986  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-mpt 3867  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fv 4977  df-ov 5594  df-pnf 7427  df-mnf 7428  df-xr 7429  df-ltxr 7430  df-le 7431  df-neg 7559  df-z 8647  df-uz 8915
This theorem is referenced by:  eluz2nn  8952  uzuzle23  8954  eluzge3nn  8955
  Copyright terms: Public domain W3C validator