| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluzuzle | GIF version | ||
| Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.) |
| Ref | Expression |
|---|---|
| eluzuzle | ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluz2 9728 | . 2 ⊢ (𝐶 ∈ (ℤ≥‘𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) | |
| 2 | simpll 527 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℤ) | |
| 3 | simpr2 1028 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℤ) | |
| 4 | zre 9450 | . . . . . 6 ⊢ (𝐵 ∈ ℤ → 𝐵 ∈ ℝ) | |
| 5 | 4 | ad2antrr 488 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ∈ ℝ) |
| 6 | zre 9450 | . . . . . . 7 ⊢ (𝐴 ∈ ℤ → 𝐴 ∈ ℝ) | |
| 7 | 6 | 3ad2ant1 1042 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐴 ∈ ℝ) |
| 8 | 7 | adantl 277 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ∈ ℝ) |
| 9 | zre 9450 | . . . . . . 7 ⊢ (𝐶 ∈ ℤ → 𝐶 ∈ ℝ) | |
| 10 | 9 | 3ad2ant2 1043 | . . . . . 6 ⊢ ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ ℝ) |
| 11 | 10 | adantl 277 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ ℝ) |
| 12 | simplr 528 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐴) | |
| 13 | simpr3 1029 | . . . . 5 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐴 ≤ 𝐶) | |
| 14 | 5, 8, 11, 12, 13 | letrd 8270 | . . . 4 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐵 ≤ 𝐶) |
| 15 | eluz2 9728 | . . . 4 ⊢ (𝐶 ∈ (ℤ≥‘𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵 ≤ 𝐶)) | |
| 16 | 2, 3, 14, 15 | syl3anbrc 1205 | . . 3 ⊢ (((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶)) → 𝐶 ∈ (ℤ≥‘𝐵)) |
| 17 | 16 | ex 115 | . 2 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴 ≤ 𝐶) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| 18 | 1, 17 | biimtrid 152 | 1 ⊢ ((𝐵 ∈ ℤ ∧ 𝐵 ≤ 𝐴) → (𝐶 ∈ (ℤ≥‘𝐴) → 𝐶 ∈ (ℤ≥‘𝐵))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∧ w3a 1002 ∈ wcel 2200 class class class wbr 4083 ‘cfv 5318 ℝcr 7998 ≤ cle 8182 ℤcz 9446 ℤ≥cuz 9722 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8090 ax-resscn 8091 ax-pre-ltwlin 8112 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fv 5326 df-ov 6004 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-neg 8320 df-z 9447 df-uz 9723 |
| This theorem is referenced by: eluz2nn 9761 eluz4eluz2 9762 uzuzle23 9766 eluzge3nn 9767 |
| Copyright terms: Public domain | W3C validator |