ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluzuzle GIF version

Theorem eluzuzle 9538
Description: An integer in an upper set of integers is an element of an upper set of integers with a smaller bound. (Contributed by Alexander van der Vekens, 17-Jun-2018.)
Assertion
Ref Expression
eluzuzle ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))

Proof of Theorem eluzuzle
StepHypRef Expression
1 eluz2 9536 . 2 (𝐶 ∈ (ℤ𝐴) ↔ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶))
2 simpll 527 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℤ)
3 simpr2 1004 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℤ)
4 zre 9259 . . . . . 6 (𝐵 ∈ ℤ → 𝐵 ∈ ℝ)
54ad2antrr 488 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵 ∈ ℝ)
6 zre 9259 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
763ad2ant1 1018 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐴 ∈ ℝ)
87adantl 277 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴 ∈ ℝ)
9 zre 9259 . . . . . . 7 (𝐶 ∈ ℤ → 𝐶 ∈ ℝ)
1093ad2ant2 1019 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ ℝ)
1110adantl 277 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ ℝ)
12 simplr 528 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐴)
13 simpr3 1005 . . . . 5 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐴𝐶)
145, 8, 11, 12, 13letrd 8083 . . . 4 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐵𝐶)
15 eluz2 9536 . . . 4 (𝐶 ∈ (ℤ𝐵) ↔ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐵𝐶))
162, 3, 14, 15syl3anbrc 1181 . . 3 (((𝐵 ∈ ℤ ∧ 𝐵𝐴) ∧ (𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶)) → 𝐶 ∈ (ℤ𝐵))
1716ex 115 . 2 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ ∧ 𝐴𝐶) → 𝐶 ∈ (ℤ𝐵)))
181, 17biimtrid 152 1 ((𝐵 ∈ ℤ ∧ 𝐵𝐴) → (𝐶 ∈ (ℤ𝐴) → 𝐶 ∈ (ℤ𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  w3a 978  wcel 2148   class class class wbr 4005  cfv 5218  cr 7812  cle 7995  cz 9255  cuz 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7904  ax-resscn 7905  ax-pre-ltwlin 7926
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226  df-ov 5880  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-neg 8133  df-z 9256  df-uz 9531
This theorem is referenced by:  eluz2nn  9568  eluz4eluz2  9569  uzuzle23  9573  eluzge3nn  9574
  Copyright terms: Public domain W3C validator