![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > letrd | Unicode version |
Description: Transitive law deduction for 'less than or equal to'. (Contributed by NM, 20-May-2005.) |
Ref | Expression |
---|---|
ltd.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ltd.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
letrd.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
letrd.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
letrd.5 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
letrd |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | letrd.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | letrd.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | ltd.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | ltd.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | letrd.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | letr 7566 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 3, 4, 5, 6 | syl3anc 1174 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
8 | 1, 2, 7 | mp2and 424 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-13 1449 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3957 ax-pow 4009 ax-pr 4036 ax-un 4260 ax-setind 4353 ax-cnex 7434 ax-resscn 7435 ax-pre-ltwlin 7456 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-fal 1295 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ne 2256 df-nel 2351 df-ral 2364 df-rex 2365 df-rab 2368 df-v 2621 df-dif 3001 df-un 3003 df-in 3005 df-ss 3012 df-pw 3431 df-sn 3452 df-pr 3453 df-op 3455 df-uni 3654 df-br 3846 df-opab 3900 df-xp 4444 df-cnv 4446 df-pnf 7522 df-mnf 7523 df-xr 7524 df-ltxr 7525 df-le 7526 |
This theorem is referenced by: eluzuzle 9025 fzdisj 9464 difelfzle 9541 flqwordi 9691 btwnzge0 9703 flqleceil 9720 modqltm1p1mod 9779 seq3split 9903 iseqf1olemqcl 9911 iseqf1olemnab 9913 iseqf1olemab 9914 seq3f1olemqsumkj 9923 seq3f1olemqsumk 9924 seq3f1olemqsum 9925 bernneq 10070 bernneq3 10072 nn0opthlem2d 10125 faclbnd 10145 facubnd 10149 iseqcoll 10243 resqrexlemover 10439 resqrexlemdecn 10441 resqrexlemcalc3 10445 absle 10518 releabs 10525 maxleastb 10643 climsqz 10719 climsqz2 10720 fsum3cvg3 10785 expcnvap0 10892 geolim2 10902 cvgratnnlemabsle 10917 cvgratnnlemfm 10919 cvgratnnlemrate 10920 cvgratz 10922 mertenslem2 10926 eftlub 10976 divalglemnqt 11194 infssuzex 11219 ncoprmgcdne1b 11345 |
Copyright terms: Public domain | W3C validator |