ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enmkv Unicode version

Theorem enmkv 7126
Description: Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6398 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
enmkv  |-  ( A 
~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )

Proof of Theorem enmkv
StepHypRef Expression
1 enmkvlem 7125 . 2  |-  ( A 
~~  B  ->  ( A  e. Markov  ->  B  e. Markov
) )
2 ensym 6747 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
3 enmkvlem 7125 . . 3  |-  ( B 
~~  A  ->  ( B  e. Markov  ->  A  e. Markov
) )
42, 3syl 14 . 2  |-  ( A 
~~  B  ->  ( B  e. Markov  ->  A  e. Markov
) )
51, 4impbid 128 1  |-  ( A 
~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    e. wcel 2136   class class class wbr 3982    ~~ cen 6704  Markovcmarkov 7115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1o 6384  df-2o 6385  df-er 6501  df-map 6616  df-en 6707  df-markov 7116
This theorem is referenced by:  neapmkv  13946
  Copyright terms: Public domain W3C validator