ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enmkv Unicode version

Theorem enmkv 7329
Description: Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either  om  e. Markov or  NN0  e. Markov. The former is a better match to conventional notation in the sense that df2o3 6576 says that  2o  =  { (/)
,  1o } whereas the corresponding relationship does not exist between  2 and  { 0 ,  1 }. (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
enmkv  |-  ( A 
~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )

Proof of Theorem enmkv
StepHypRef Expression
1 enmkvlem 7328 . 2  |-  ( A 
~~  B  ->  ( A  e. Markov  ->  B  e. Markov
) )
2 ensym 6933 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
3 enmkvlem 7328 . . 3  |-  ( B 
~~  A  ->  ( B  e. Markov  ->  A  e. Markov
) )
42, 3syl 14 . 2  |-  ( A 
~~  B  ->  ( B  e. Markov  ->  A  e. Markov
) )
51, 4impbid 129 1  |-  ( A 
~~  B  ->  ( A  e. Markov  <->  B  e. Markov ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2200   class class class wbr 4083    ~~ cen 6885  Markovcmarkov 7318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-id 4384  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1o 6562  df-2o 6563  df-er 6680  df-map 6797  df-en 6888  df-markov 7319
This theorem is referenced by:  neapmkv  16436
  Copyright terms: Public domain W3C validator