ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  enmkv GIF version

Theorem enmkv 7325
Description: Being Markov is invariant with respect to equinumerosity. For example, this means that we can express the Markov's Principle as either ω ∈ Markov or 0 ∈ Markov. The former is a better match to conventional notation in the sense that df2o3 6574 says that 2o = {∅, 1o} whereas the corresponding relationship does not exist between 2 and {0, 1}. (Contributed by Jim Kingdon, 24-Jun-2024.)
Assertion
Ref Expression
enmkv (𝐴𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov))

Proof of Theorem enmkv
StepHypRef Expression
1 enmkvlem 7324 . 2 (𝐴𝐵 → (𝐴 ∈ Markov → 𝐵 ∈ Markov))
2 ensym 6931 . . 3 (𝐴𝐵𝐵𝐴)
3 enmkvlem 7324 . . 3 (𝐵𝐴 → (𝐵 ∈ Markov → 𝐴 ∈ Markov))
42, 3syl 14 . 2 (𝐴𝐵 → (𝐵 ∈ Markov → 𝐴 ∈ Markov))
51, 4impbid 129 1 (𝐴𝐵 → (𝐴 ∈ Markov ↔ 𝐵 ∈ Markov))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2200   class class class wbr 4082  cen 6883  Markovcmarkov 7314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1o 6560  df-2o 6561  df-er 6678  df-map 6795  df-en 6886  df-markov 7315
This theorem is referenced by:  neapmkv  16395
  Copyright terms: Public domain W3C validator