| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnfi | Unicode version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| nnfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6915 |
. . 3
| |
| 2 | breq2 4087 |
. . . 4
| |
| 3 | 2 | rspcev 2907 |
. . 3
|
| 4 | 1, 3 | mpdan 421 |
. 2
|
| 5 | isfi 6912 |
. 2
| |
| 6 | 4, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-en 6888 df-fin 6890 |
| This theorem is referenced by: dif1en 7041 0fin 7046 findcard2 7051 findcard2s 7052 diffisn 7055 pw1fin 7072 en1eqsn 7115 nninfwlpoimlemg 7342 nninfwlpoimlemginf 7343 exmidonfinlem 7371 fzfig 10652 hashennnuni 11001 hashennn 11002 hashun 11027 hashp1i 11032 hash2en 11065 unct 13013 xpsfrnel 13377 znidom 14621 znidomb 14622 upgrfi 15902 pwf1oexmid 16365 |
| Copyright terms: Public domain | W3C validator |