| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > nnfi | Unicode version | ||
| Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
| Ref | Expression |
|---|---|
| nnfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6823 |
. . 3
| |
| 2 | breq2 4037 |
. . . 4
| |
| 3 | 2 | rspcev 2868 |
. . 3
|
| 4 | 1, 3 | mpdan 421 |
. 2
|
| 5 | isfi 6820 |
. 2
| |
| 6 | 4, 5 | sylibr 134 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-en 6800 df-fin 6802 |
| This theorem is referenced by: dif1en 6940 0fin 6945 findcard2 6950 findcard2s 6951 diffisn 6954 pw1fin 6971 en1eqsn 7014 nninfwlpoimlemg 7241 nninfwlpoimlemginf 7242 exmidonfinlem 7260 fzfig 10522 hashennnuni 10871 hashennn 10872 hashun 10897 hashp1i 10902 unct 12659 xpsfrnel 12987 znidom 14213 znidomb 14214 pwf1oexmid 15644 |
| Copyright terms: Public domain | W3C validator |