Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnfi | Unicode version |
Description: Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) |
Ref | Expression |
---|---|
nnfi |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | enrefg 6754 | . . 3 | |
2 | breq2 4002 | . . . 4 | |
3 | 2 | rspcev 2839 | . . 3 |
4 | 1, 3 | mpdan 421 | . 2 |
5 | isfi 6751 | . 2 | |
6 | 4, 5 | sylibr 134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2146 wrex 2454 class class class wbr 3998 com 4583 cen 6728 cfn 6730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ral 2458 df-rex 2459 df-v 2737 df-un 3131 df-in 3133 df-ss 3140 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-ima 4633 df-fun 5210 df-fn 5211 df-f 5212 df-f1 5213 df-fo 5214 df-f1o 5215 df-en 6731 df-fin 6733 |
This theorem is referenced by: dif1en 6869 0fin 6874 findcard2 6879 findcard2s 6880 diffisn 6883 pw1fin 6900 en1eqsn 6937 nninfwlpoimlemg 7163 nninfwlpoimlemginf 7164 exmidonfinlem 7182 fzfig 10400 hashennnuni 10727 hashennn 10728 hashun 10753 hashp1i 10758 unct 12410 pwf1oexmid 14309 |
Copyright terms: Public domain | W3C validator |