ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o Unicode version

Theorem iseqf1olemqf1o 10615
Description: Lemma for seq3f1o 10626. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqf1o  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Distinct variable groups:    u, J    u, K    u, M    u, N    ph, u
Allowed substitution hint:    Q( u)

Proof of Theorem iseqf1olemqf1o
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
2 iseqf1olemqf.j . . . 4  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
3 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
41, 2, 3iseqf1olemqf 10613 . . 3  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
51ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  K  e.  ( M ... N ) )
62ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
7 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  e.  ( M ... N ) )
8 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  w  e.  ( M ... N ) )
9 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  ( Q `  v )  =  ( Q `  w ) )
105, 6, 3, 7, 8, 9iseqf1olemmo 10614 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  =  w )
1110ex 115 . . . 4  |-  ( (
ph  /\  ( v  e.  ( M ... N
)  /\  w  e.  ( M ... N ) ) )  ->  (
( Q `  v
)  =  ( Q `
 w )  -> 
v  =  w ) )
1211ralrimivva 2579 . . 3  |-  ( ph  ->  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) )
13 dff13 5818 . . 3  |-  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  ( Q : ( M ... N ) --> ( M ... N )  /\  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) ) )
144, 12, 13sylanbrc 417 . 2  |-  ( ph  ->  Q : ( M ... N ) -1-1-> ( M ... N ) )
15 elfzel1 10116 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
161, 15syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
17 elfzel2 10115 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
181, 17syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1916, 18fzfigd 10540 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  Fin )
20 enrefg 6832 . . . 4  |-  ( ( M ... N )  e.  Fin  ->  ( M ... N )  ~~  ( M ... N ) )
2119, 20syl 14 . . 3  |-  ( ph  ->  ( M ... N
)  ~~  ( M ... N ) )
22 f1finf1o 7022 . . 3  |-  ( ( ( M ... N
)  ~~  ( M ... N )  /\  ( M ... N )  e. 
Fin )  ->  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  Q :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
2321, 19, 22syl2anc 411 . 2  |-  ( ph  ->  ( Q : ( M ... N )
-1-1-> ( M ... N
)  <->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) ) )
2414, 23mpbid 147 1  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   A.wral 2475   ifcif 3562   class class class wbr 4034    |-> cmpt 4095   `'ccnv 4663   -->wf 5255   -1-1->wf1 5256   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    ~~ cen 6806   Fincfn 6808   1c1 7897    - cmin 8214   ZZcz 9343   ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-1o 6483  df-er 6601  df-en 6809  df-fin 6811  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by:  seq3f1olemqsumkj  10620  seq3f1olemqsumk  10621  seq3f1olemstep  10623
  Copyright terms: Public domain W3C validator