ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o Unicode version

Theorem iseqf1olemqf1o 10580
Description: Lemma for seq3f1o 10591. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqf1o  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Distinct variable groups:    u, J    u, K    u, M    u, N    ph, u
Allowed substitution hint:    Q( u)

Proof of Theorem iseqf1olemqf1o
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
2 iseqf1olemqf.j . . . 4  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
3 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
41, 2, 3iseqf1olemqf 10578 . . 3  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
51ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  K  e.  ( M ... N ) )
62ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
7 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  e.  ( M ... N ) )
8 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  w  e.  ( M ... N ) )
9 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  ( Q `  v )  =  ( Q `  w ) )
105, 6, 3, 7, 8, 9iseqf1olemmo 10579 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  =  w )
1110ex 115 . . . 4  |-  ( (
ph  /\  ( v  e.  ( M ... N
)  /\  w  e.  ( M ... N ) ) )  ->  (
( Q `  v
)  =  ( Q `
 w )  -> 
v  =  w ) )
1211ralrimivva 2576 . . 3  |-  ( ph  ->  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) )
13 dff13 5812 . . 3  |-  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  ( Q : ( M ... N ) --> ( M ... N )  /\  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) ) )
144, 12, 13sylanbrc 417 . 2  |-  ( ph  ->  Q : ( M ... N ) -1-1-> ( M ... N ) )
15 elfzel1 10093 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
161, 15syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
17 elfzel2 10092 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
181, 17syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1916, 18fzfigd 10505 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  Fin )
20 enrefg 6820 . . . 4  |-  ( ( M ... N )  e.  Fin  ->  ( M ... N )  ~~  ( M ... N ) )
2119, 20syl 14 . . 3  |-  ( ph  ->  ( M ... N
)  ~~  ( M ... N ) )
22 f1finf1o 7008 . . 3  |-  ( ( ( M ... N
)  ~~  ( M ... N )  /\  ( M ... N )  e. 
Fin )  ->  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  Q :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
2321, 19, 22syl2anc 411 . 2  |-  ( ph  ->  ( Q : ( M ... N )
-1-1-> ( M ... N
)  <->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) ) )
2414, 23mpbid 147 1  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   A.wral 2472   ifcif 3558   class class class wbr 4030    |-> cmpt 4091   `'ccnv 4659   -->wf 5251   -1-1->wf1 5252   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5919    ~~ cen 6794   Fincfn 6796   1c1 7875    - cmin 8192   ZZcz 9320   ...cfz 10077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-iinf 4621  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-distr 7978  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-cnre 7985  ax-pre-ltirr 7986  ax-pre-ltwlin 7987  ax-pre-lttrn 7988  ax-pre-apti 7989  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-ilim 4401  df-suc 4403  df-iom 4624  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-riota 5874  df-ov 5922  df-oprab 5923  df-mpo 5924  df-1st 6195  df-2nd 6196  df-recs 6360  df-frec 6446  df-1o 6471  df-er 6589  df-en 6797  df-fin 6799  df-pnf 8058  df-mnf 8059  df-xr 8060  df-ltxr 8061  df-le 8062  df-sub 8194  df-neg 8195  df-inn 8985  df-n0 9244  df-z 9321  df-uz 9596  df-fz 10078
This theorem is referenced by:  seq3f1olemqsumkj  10585  seq3f1olemqsumk  10586  seq3f1olemstep  10588
  Copyright terms: Public domain W3C validator