ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  iseqf1olemqf1o Unicode version

Theorem iseqf1olemqf1o 10728
Description: Lemma for seq3f1o 10739. 
Q is a permutation of  ( M ... N
).  Q is formed from the constant portion of  J, followed by the single element  K (at position  K), followed by the rest of J (with the  K deleted and the elements before  K moved one position later to fill the gap). (Contributed by Jim Kingdon, 21-Aug-2022.)
Hypotheses
Ref Expression
iseqf1olemqf.k  |-  ( ph  ->  K  e.  ( M ... N ) )
iseqf1olemqf.j  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
iseqf1olemqf.q  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
Assertion
Ref Expression
iseqf1olemqf1o  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Distinct variable groups:    u, J    u, K    u, M    u, N    ph, u
Allowed substitution hint:    Q( u)

Proof of Theorem iseqf1olemqf1o
Dummy variables  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iseqf1olemqf.k . . . 4  |-  ( ph  ->  K  e.  ( M ... N ) )
2 iseqf1olemqf.j . . . 4  |-  ( ph  ->  J : ( M ... N ) -1-1-onto-> ( M ... N ) )
3 iseqf1olemqf.q . . . 4  |-  Q  =  ( u  e.  ( M ... N ) 
|->  if ( u  e.  ( K ... ( `' J `  K ) ) ,  if ( u  =  K ,  K ,  ( J `  ( u  -  1 ) ) ) ,  ( J `  u
) ) )
41, 2, 3iseqf1olemqf 10726 . . 3  |-  ( ph  ->  Q : ( M ... N ) --> ( M ... N ) )
51ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  K  e.  ( M ... N ) )
62ad2antrr 488 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  J :
( M ... N
)
-1-1-onto-> ( M ... N ) )
7 simplrl 535 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  e.  ( M ... N ) )
8 simplrr 536 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  w  e.  ( M ... N ) )
9 simpr 110 . . . . . 6  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  ( Q `  v )  =  ( Q `  w ) )
105, 6, 3, 7, 8, 9iseqf1olemmo 10727 . . . . 5  |-  ( ( ( ph  /\  (
v  e.  ( M ... N )  /\  w  e.  ( M ... N ) ) )  /\  ( Q `  v )  =  ( Q `  w ) )  ->  v  =  w )
1110ex 115 . . . 4  |-  ( (
ph  /\  ( v  e.  ( M ... N
)  /\  w  e.  ( M ... N ) ) )  ->  (
( Q `  v
)  =  ( Q `
 w )  -> 
v  =  w ) )
1211ralrimivva 2612 . . 3  |-  ( ph  ->  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) )
13 dff13 5892 . . 3  |-  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  ( Q : ( M ... N ) --> ( M ... N )  /\  A. v  e.  ( M ... N ) A. w  e.  ( M ... N ) ( ( Q `  v )  =  ( Q `  w )  ->  v  =  w ) ) )
144, 12, 13sylanbrc 417 . 2  |-  ( ph  ->  Q : ( M ... N ) -1-1-> ( M ... N ) )
15 elfzel1 10220 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  M  e.  ZZ )
161, 15syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
17 elfzel2 10219 . . . . . 6  |-  ( K  e.  ( M ... N )  ->  N  e.  ZZ )
181, 17syl 14 . . . . 5  |-  ( ph  ->  N  e.  ZZ )
1916, 18fzfigd 10653 . . . 4  |-  ( ph  ->  ( M ... N
)  e.  Fin )
20 enrefg 6915 . . . 4  |-  ( ( M ... N )  e.  Fin  ->  ( M ... N )  ~~  ( M ... N ) )
2119, 20syl 14 . . 3  |-  ( ph  ->  ( M ... N
)  ~~  ( M ... N ) )
22 f1finf1o 7114 . . 3  |-  ( ( ( M ... N
)  ~~  ( M ... N )  /\  ( M ... N )  e. 
Fin )  ->  ( Q : ( M ... N ) -1-1-> ( M ... N )  <->  Q :
( M ... N
)
-1-1-onto-> ( M ... N ) ) )
2321, 19, 22syl2anc 411 . 2  |-  ( ph  ->  ( Q : ( M ... N )
-1-1-> ( M ... N
)  <->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) ) )
2414, 23mpbid 147 1  |-  ( ph  ->  Q : ( M ... N ) -1-1-onto-> ( M ... N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   A.wral 2508   ifcif 3602   class class class wbr 4083    |-> cmpt 4145   `'ccnv 4718   -->wf 5314   -1-1->wf1 5315   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001    ~~ cen 6885   Fincfn 6887   1c1 8000    - cmin 8317   ZZcz 9446   ...cfz 10204
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-apti 8114  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-1o 6562  df-er 6680  df-en 6888  df-fin 6890  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723  df-fz 10205
This theorem is referenced by:  seq3f1olemqsumkj  10733  seq3f1olemqsumk  10734  seq3f1olemstep  10736
  Copyright terms: Public domain W3C validator