ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssdmm Unicode version

Theorem oprssdmm 6275
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
Hypotheses
Ref Expression
oprssdmm.m  |-  ( (
ph  /\  u  e.  S )  ->  E. v 
v  e.  u )
oprssdmm.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
oprssdmm.f  |-  ( ph  ->  Rel  F )
Assertion
Ref Expression
oprssdmm  |-  ( ph  ->  ( S  X.  S
)  C_  dom  F )
Distinct variable groups:    u, F, v, x, y    u, S, x, y    ph, u, x, y
Allowed substitution hints:    ph( v)    S( v)

Proof of Theorem oprssdmm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elxp6 6273 . . . . . . 7  |-  ( z  e.  ( S  X.  S )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S ) ) )
21biimpi 120 . . . . . 6  |-  ( z  e.  ( S  X.  S )  ->  (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( ( 1st `  z )  e.  S  /\  ( 2nd `  z )  e.  S
) ) )
32adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( ( 1st `  z )  e.  S  /\  ( 2nd `  z )  e.  S
) ) )
43simpld 112 . . . 4  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
53simprd 114 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  (
( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S ) )
6 oprssdmm.f . . . . . . . . 9  |-  ( ph  ->  Rel  F )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  Rel  F )
8 eleq2 2270 . . . . . . . . . 10  |-  ( u  =  ( F `  <. x ,  y >.
)  ->  ( v  e.  u  <->  v  e.  ( F `  <. x ,  y >. )
) )
98exbidv 1849 . . . . . . . . 9  |-  ( u  =  ( F `  <. x ,  y >.
)  ->  ( E. v  v  e.  u  <->  E. v  v  e.  ( F `  <. x ,  y >. )
) )
10 oprssdmm.m . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  E. v 
v  e.  u )
1110ralrimiva 2580 . . . . . . . . . 10  |-  ( ph  ->  A. u  e.  S  E. v  v  e.  u )
1211adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. u  e.  S  E. v  v  e.  u )
13 df-ov 5965 . . . . . . . . . 10  |-  ( x F y )  =  ( F `  <. x ,  y >. )
14 oprssdmm.cl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
1513, 14eqeltrrid 2294 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  <. x ,  y >. )  e.  S )
169, 12, 15rspcdva 2886 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  E. v  v  e.  ( F `  <. x ,  y >. )
)
17 relelfvdm 5626 . . . . . . . . . 10  |-  ( ( Rel  F  /\  v  e.  ( F `  <. x ,  y >. )
)  ->  <. x ,  y >.  e.  dom  F )
1817ex 115 . . . . . . . . 9  |-  ( Rel 
F  ->  ( v  e.  ( F `  <. x ,  y >. )  -> 
<. x ,  y >.  e.  dom  F ) )
1918exlimdv 1843 . . . . . . . 8  |-  ( Rel 
F  ->  ( E. v  v  e.  ( F `  <. x ,  y >. )  ->  <. x ,  y >.  e.  dom  F ) )
207, 16, 19sylc 62 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  <. x ,  y >.  e.  dom  F )
2120ralrimivva 2589 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )
2221adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )
23 opeq1 3828 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  <. x ,  y >.  =  <. ( 1st `  z ) ,  y >. )
2423eleq1d 2275 . . . . . 6  |-  ( x  =  ( 1st `  z
)  ->  ( <. x ,  y >.  e.  dom  F  <->  <. ( 1st `  z
) ,  y >.  e.  dom  F ) )
25 opeq2 3829 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  <. ( 1st `  z ) ,  y
>.  =  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
2625eleq1d 2275 . . . . . 6  |-  ( y  =  ( 2nd `  z
)  ->  ( <. ( 1st `  z ) ,  y >.  e.  dom  F  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  dom  F ) )
2724, 26rspc2va 2895 . . . . 5  |-  ( ( ( ( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S )  /\  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )  ->  <. ( 1st `  z ) ,  ( 2nd `  z )
>.  e.  dom  F )
285, 22, 27syl2anc 411 . . . 4  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  e.  dom  F
)
294, 28eqeltrd 2283 . . 3  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  z  e.  dom  F )
3029ex 115 . 2  |-  ( ph  ->  ( z  e.  ( S  X.  S )  ->  z  e.  dom  F ) )
3130ssrdv 3203 1  |-  ( ph  ->  ( S  X.  S
)  C_  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485    C_ wss 3170   <.cop 3641    X. cxp 4686   dom cdm 4688   Rel wrel 4693   ` cfv 5285  (class class class)co 5962   1stc1st 6242   2ndc2nd 6243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fv 5293  df-ov 5965  df-1st 6244  df-2nd 6245
This theorem is referenced by:  axaddf  8011  axmulf  8012
  Copyright terms: Public domain W3C validator