ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssdmm Unicode version

Theorem oprssdmm 6315
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
Hypotheses
Ref Expression
oprssdmm.m  |-  ( (
ph  /\  u  e.  S )  ->  E. v 
v  e.  u )
oprssdmm.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
oprssdmm.f  |-  ( ph  ->  Rel  F )
Assertion
Ref Expression
oprssdmm  |-  ( ph  ->  ( S  X.  S
)  C_  dom  F )
Distinct variable groups:    u, F, v, x, y    u, S, x, y    ph, u, x, y
Allowed substitution hints:    ph( v)    S( v)

Proof of Theorem oprssdmm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elxp6 6313 . . . . . . 7  |-  ( z  e.  ( S  X.  S )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S ) ) )
21biimpi 120 . . . . . 6  |-  ( z  e.  ( S  X.  S )  ->  (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( ( 1st `  z )  e.  S  /\  ( 2nd `  z )  e.  S
) ) )
32adantl 277 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( ( 1st `  z )  e.  S  /\  ( 2nd `  z )  e.  S
) ) )
43simpld 112 . . . 4  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
53simprd 114 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  (
( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S ) )
6 oprssdmm.f . . . . . . . . 9  |-  ( ph  ->  Rel  F )
76adantr 276 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  Rel  F )
8 eleq2 2293 . . . . . . . . . 10  |-  ( u  =  ( F `  <. x ,  y >.
)  ->  ( v  e.  u  <->  v  e.  ( F `  <. x ,  y >. )
) )
98exbidv 1871 . . . . . . . . 9  |-  ( u  =  ( F `  <. x ,  y >.
)  ->  ( E. v  v  e.  u  <->  E. v  v  e.  ( F `  <. x ,  y >. )
) )
10 oprssdmm.m . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  E. v 
v  e.  u )
1110ralrimiva 2603 . . . . . . . . . 10  |-  ( ph  ->  A. u  e.  S  E. v  v  e.  u )
1211adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. u  e.  S  E. v  v  e.  u )
13 df-ov 6003 . . . . . . . . . 10  |-  ( x F y )  =  ( F `  <. x ,  y >. )
14 oprssdmm.cl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
1513, 14eqeltrrid 2317 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  <. x ,  y >. )  e.  S )
169, 12, 15rspcdva 2912 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  E. v  v  e.  ( F `  <. x ,  y >. )
)
17 relelfvdm 5658 . . . . . . . . . 10  |-  ( ( Rel  F  /\  v  e.  ( F `  <. x ,  y >. )
)  ->  <. x ,  y >.  e.  dom  F )
1817ex 115 . . . . . . . . 9  |-  ( Rel 
F  ->  ( v  e.  ( F `  <. x ,  y >. )  -> 
<. x ,  y >.  e.  dom  F ) )
1918exlimdv 1865 . . . . . . . 8  |-  ( Rel 
F  ->  ( E. v  v  e.  ( F `  <. x ,  y >. )  ->  <. x ,  y >.  e.  dom  F ) )
207, 16, 19sylc 62 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  <. x ,  y >.  e.  dom  F )
2120ralrimivva 2612 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )
2221adantr 276 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )
23 opeq1 3856 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  <. x ,  y >.  =  <. ( 1st `  z ) ,  y >. )
2423eleq1d 2298 . . . . . 6  |-  ( x  =  ( 1st `  z
)  ->  ( <. x ,  y >.  e.  dom  F  <->  <. ( 1st `  z
) ,  y >.  e.  dom  F ) )
25 opeq2 3857 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  <. ( 1st `  z ) ,  y
>.  =  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
2625eleq1d 2298 . . . . . 6  |-  ( y  =  ( 2nd `  z
)  ->  ( <. ( 1st `  z ) ,  y >.  e.  dom  F  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  dom  F ) )
2724, 26rspc2va 2921 . . . . 5  |-  ( ( ( ( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S )  /\  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )  ->  <. ( 1st `  z ) ,  ( 2nd `  z )
>.  e.  dom  F )
285, 22, 27syl2anc 411 . . . 4  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  e.  dom  F
)
294, 28eqeltrd 2306 . . 3  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  z  e.  dom  F )
3029ex 115 . 2  |-  ( ph  ->  ( z  e.  ( S  X.  S )  ->  z  e.  dom  F ) )
3130ssrdv 3230 1  |-  ( ph  ->  ( S  X.  S
)  C_  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   <.cop 3669    X. cxp 4716   dom cdm 4718   Rel wrel 4723   ` cfv 5317  (class class class)co 6000   1stc1st 6282   2ndc2nd 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-1st 6284  df-2nd 6285
This theorem is referenced by:  axaddf  8051  axmulf  8052
  Copyright terms: Public domain W3C validator