Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprssdmm | Unicode version |
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
Ref | Expression |
---|---|
oprssdmm.m | |
oprssdmm.cl | |
oprssdmm.f |
Ref | Expression |
---|---|
oprssdmm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 6148 | . . . . . . 7 | |
2 | 1 | biimpi 119 | . . . . . 6 |
3 | 2 | adantl 275 | . . . . 5 |
4 | 3 | simpld 111 | . . . 4 |
5 | 3 | simprd 113 | . . . . 5 |
6 | oprssdmm.f | . . . . . . . . 9 | |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | eleq2 2234 | . . . . . . . . . 10 | |
9 | 8 | exbidv 1818 | . . . . . . . . 9 |
10 | oprssdmm.m | . . . . . . . . . . 11 | |
11 | 10 | ralrimiva 2543 | . . . . . . . . . 10 |
12 | 11 | adantr 274 | . . . . . . . . 9 |
13 | df-ov 5856 | . . . . . . . . . 10 | |
14 | oprssdmm.cl | . . . . . . . . . 10 | |
15 | 13, 14 | eqeltrrid 2258 | . . . . . . . . 9 |
16 | 9, 12, 15 | rspcdva 2839 | . . . . . . . 8 |
17 | relelfvdm 5528 | . . . . . . . . . 10 | |
18 | 17 | ex 114 | . . . . . . . . 9 |
19 | 18 | exlimdv 1812 | . . . . . . . 8 |
20 | 7, 16, 19 | sylc 62 | . . . . . . 7 |
21 | 20 | ralrimivva 2552 | . . . . . 6 |
22 | 21 | adantr 274 | . . . . 5 |
23 | opeq1 3765 | . . . . . . 7 | |
24 | 23 | eleq1d 2239 | . . . . . 6 |
25 | opeq2 3766 | . . . . . . 7 | |
26 | 25 | eleq1d 2239 | . . . . . 6 |
27 | 24, 26 | rspc2va 2848 | . . . . 5 |
28 | 5, 22, 27 | syl2anc 409 | . . . 4 |
29 | 4, 28 | eqeltrd 2247 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | 30 | ssrdv 3153 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wex 1485 wcel 2141 wral 2448 wss 3121 cop 3586 cxp 4609 cdm 4611 wrel 4616 cfv 5198 (class class class)co 5853 c1st 6117 c2nd 6118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-1st 6119 df-2nd 6120 |
This theorem is referenced by: axaddf 7830 axmulf 7831 |
Copyright terms: Public domain | W3C validator |