Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprssdmm | Unicode version |
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
Ref | Expression |
---|---|
oprssdmm.m | |
oprssdmm.cl | |
oprssdmm.f |
Ref | Expression |
---|---|
oprssdmm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 6137 | . . . . . . 7 | |
2 | 1 | biimpi 119 | . . . . . 6 |
3 | 2 | adantl 275 | . . . . 5 |
4 | 3 | simpld 111 | . . . 4 |
5 | 3 | simprd 113 | . . . . 5 |
6 | oprssdmm.f | . . . . . . . . 9 | |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | eleq2 2230 | . . . . . . . . . 10 | |
9 | 8 | exbidv 1813 | . . . . . . . . 9 |
10 | oprssdmm.m | . . . . . . . . . . 11 | |
11 | 10 | ralrimiva 2539 | . . . . . . . . . 10 |
12 | 11 | adantr 274 | . . . . . . . . 9 |
13 | df-ov 5845 | . . . . . . . . . 10 | |
14 | oprssdmm.cl | . . . . . . . . . 10 | |
15 | 13, 14 | eqeltrrid 2254 | . . . . . . . . 9 |
16 | 9, 12, 15 | rspcdva 2835 | . . . . . . . 8 |
17 | relelfvdm 5518 | . . . . . . . . . 10 | |
18 | 17 | ex 114 | . . . . . . . . 9 |
19 | 18 | exlimdv 1807 | . . . . . . . 8 |
20 | 7, 16, 19 | sylc 62 | . . . . . . 7 |
21 | 20 | ralrimivva 2548 | . . . . . 6 |
22 | 21 | adantr 274 | . . . . 5 |
23 | opeq1 3758 | . . . . . . 7 | |
24 | 23 | eleq1d 2235 | . . . . . 6 |
25 | opeq2 3759 | . . . . . . 7 | |
26 | 25 | eleq1d 2235 | . . . . . 6 |
27 | 24, 26 | rspc2va 2844 | . . . . 5 |
28 | 5, 22, 27 | syl2anc 409 | . . . 4 |
29 | 4, 28 | eqeltrd 2243 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | 30 | ssrdv 3148 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wex 1480 wcel 2136 wral 2444 wss 3116 cop 3579 cxp 4602 cdm 4604 wrel 4609 cfv 5188 (class class class)co 5842 c1st 6106 c2nd 6107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-1st 6108 df-2nd 6109 |
This theorem is referenced by: axaddf 7809 axmulf 7810 |
Copyright terms: Public domain | W3C validator |