Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > oprssdmm | Unicode version |
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
Ref | Expression |
---|---|
oprssdmm.m | |
oprssdmm.cl | |
oprssdmm.f |
Ref | Expression |
---|---|
oprssdmm |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp6 6114 | . . . . . . 7 | |
2 | 1 | biimpi 119 | . . . . . 6 |
3 | 2 | adantl 275 | . . . . 5 |
4 | 3 | simpld 111 | . . . 4 |
5 | 3 | simprd 113 | . . . . 5 |
6 | oprssdmm.f | . . . . . . . . 9 | |
7 | 6 | adantr 274 | . . . . . . . 8 |
8 | eleq2 2221 | . . . . . . . . . 10 | |
9 | 8 | exbidv 1805 | . . . . . . . . 9 |
10 | oprssdmm.m | . . . . . . . . . . 11 | |
11 | 10 | ralrimiva 2530 | . . . . . . . . . 10 |
12 | 11 | adantr 274 | . . . . . . . . 9 |
13 | df-ov 5824 | . . . . . . . . . 10 | |
14 | oprssdmm.cl | . . . . . . . . . 10 | |
15 | 13, 14 | eqeltrrid 2245 | . . . . . . . . 9 |
16 | 9, 12, 15 | rspcdva 2821 | . . . . . . . 8 |
17 | relelfvdm 5499 | . . . . . . . . . 10 | |
18 | 17 | ex 114 | . . . . . . . . 9 |
19 | 18 | exlimdv 1799 | . . . . . . . 8 |
20 | 7, 16, 19 | sylc 62 | . . . . . . 7 |
21 | 20 | ralrimivva 2539 | . . . . . 6 |
22 | 21 | adantr 274 | . . . . 5 |
23 | opeq1 3741 | . . . . . . 7 | |
24 | 23 | eleq1d 2226 | . . . . . 6 |
25 | opeq2 3742 | . . . . . . 7 | |
26 | 25 | eleq1d 2226 | . . . . . 6 |
27 | 24, 26 | rspc2va 2830 | . . . . 5 |
28 | 5, 22, 27 | syl2anc 409 | . . . 4 |
29 | 4, 28 | eqeltrd 2234 | . . 3 |
30 | 29 | ex 114 | . 2 |
31 | 30 | ssrdv 3134 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1335 wex 1472 wcel 2128 wral 2435 wss 3102 cop 3563 cxp 4583 cdm 4585 wrel 4590 cfv 5169 (class class class)co 5821 c1st 6083 c2nd 6084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-iota 5134 df-fun 5171 df-fv 5177 df-ov 5824 df-1st 6085 df-2nd 6086 |
This theorem is referenced by: axaddf 7782 axmulf 7783 |
Copyright terms: Public domain | W3C validator |