| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprssdmm | Unicode version | ||
| Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
| Ref | Expression |
|---|---|
| oprssdmm.m |
|
| oprssdmm.cl |
|
| oprssdmm.f |
|
| Ref | Expression |
|---|---|
| oprssdmm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6273 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | 3 | simpld 112 |
. . . 4
|
| 5 | 3 | simprd 114 |
. . . . 5
|
| 6 | oprssdmm.f |
. . . . . . . . 9
| |
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | eleq2 2270 |
. . . . . . . . . 10
| |
| 9 | 8 | exbidv 1849 |
. . . . . . . . 9
|
| 10 | oprssdmm.m |
. . . . . . . . . . 11
| |
| 11 | 10 | ralrimiva 2580 |
. . . . . . . . . 10
|
| 12 | 11 | adantr 276 |
. . . . . . . . 9
|
| 13 | df-ov 5965 |
. . . . . . . . . 10
| |
| 14 | oprssdmm.cl |
. . . . . . . . . 10
| |
| 15 | 13, 14 | eqeltrrid 2294 |
. . . . . . . . 9
|
| 16 | 9, 12, 15 | rspcdva 2886 |
. . . . . . . 8
|
| 17 | relelfvdm 5626 |
. . . . . . . . . 10
| |
| 18 | 17 | ex 115 |
. . . . . . . . 9
|
| 19 | 18 | exlimdv 1843 |
. . . . . . . 8
|
| 20 | 7, 16, 19 | sylc 62 |
. . . . . . 7
|
| 21 | 20 | ralrimivva 2589 |
. . . . . 6
|
| 22 | 21 | adantr 276 |
. . . . 5
|
| 23 | opeq1 3828 |
. . . . . . 7
| |
| 24 | 23 | eleq1d 2275 |
. . . . . 6
|
| 25 | opeq2 3829 |
. . . . . . 7
| |
| 26 | 25 | eleq1d 2275 |
. . . . . 6
|
| 27 | 24, 26 | rspc2va 2895 |
. . . . 5
|
| 28 | 5, 22, 27 | syl2anc 411 |
. . . 4
|
| 29 | 4, 28 | eqeltrd 2283 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | 30 | ssrdv 3203 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-iota 5246 df-fun 5287 df-fv 5293 df-ov 5965 df-1st 6244 df-2nd 6245 |
| This theorem is referenced by: axaddf 8011 axmulf 8012 |
| Copyright terms: Public domain | W3C validator |