| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > oprssdmm | Unicode version | ||
| Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.) |
| Ref | Expression |
|---|---|
| oprssdmm.m |
|
| oprssdmm.cl |
|
| oprssdmm.f |
|
| Ref | Expression |
|---|---|
| oprssdmm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp6 6313 |
. . . . . . 7
| |
| 2 | 1 | biimpi 120 |
. . . . . 6
|
| 3 | 2 | adantl 277 |
. . . . 5
|
| 4 | 3 | simpld 112 |
. . . 4
|
| 5 | 3 | simprd 114 |
. . . . 5
|
| 6 | oprssdmm.f |
. . . . . . . . 9
| |
| 7 | 6 | adantr 276 |
. . . . . . . 8
|
| 8 | eleq2 2293 |
. . . . . . . . . 10
| |
| 9 | 8 | exbidv 1871 |
. . . . . . . . 9
|
| 10 | oprssdmm.m |
. . . . . . . . . . 11
| |
| 11 | 10 | ralrimiva 2603 |
. . . . . . . . . 10
|
| 12 | 11 | adantr 276 |
. . . . . . . . 9
|
| 13 | df-ov 6003 |
. . . . . . . . . 10
| |
| 14 | oprssdmm.cl |
. . . . . . . . . 10
| |
| 15 | 13, 14 | eqeltrrid 2317 |
. . . . . . . . 9
|
| 16 | 9, 12, 15 | rspcdva 2912 |
. . . . . . . 8
|
| 17 | relelfvdm 5658 |
. . . . . . . . . 10
| |
| 18 | 17 | ex 115 |
. . . . . . . . 9
|
| 19 | 18 | exlimdv 1865 |
. . . . . . . 8
|
| 20 | 7, 16, 19 | sylc 62 |
. . . . . . 7
|
| 21 | 20 | ralrimivva 2612 |
. . . . . 6
|
| 22 | 21 | adantr 276 |
. . . . 5
|
| 23 | opeq1 3856 |
. . . . . . 7
| |
| 24 | 23 | eleq1d 2298 |
. . . . . 6
|
| 25 | opeq2 3857 |
. . . . . . 7
| |
| 26 | 25 | eleq1d 2298 |
. . . . . 6
|
| 27 | 24, 26 | rspc2va 2921 |
. . . . 5
|
| 28 | 5, 22, 27 | syl2anc 411 |
. . . 4
|
| 29 | 4, 28 | eqeltrd 2306 |
. . 3
|
| 30 | 29 | ex 115 |
. 2
|
| 31 | 30 | ssrdv 3230 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-1st 6284 df-2nd 6285 |
| This theorem is referenced by: axaddf 8051 axmulf 8052 |
| Copyright terms: Public domain | W3C validator |