ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  oprssdmm Unicode version

Theorem oprssdmm 6116
Description: Domain of closure of an operation. (Contributed by Jim Kingdon, 23-Oct-2023.)
Hypotheses
Ref Expression
oprssdmm.m  |-  ( (
ph  /\  u  e.  S )  ->  E. v 
v  e.  u )
oprssdmm.cl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
oprssdmm.f  |-  ( ph  ->  Rel  F )
Assertion
Ref Expression
oprssdmm  |-  ( ph  ->  ( S  X.  S
)  C_  dom  F )
Distinct variable groups:    u, F, v, x, y    u, S, x, y    ph, u, x, y
Allowed substitution hints:    ph( v)    S( v)

Proof of Theorem oprssdmm
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elxp6 6114 . . . . . . 7  |-  ( z  e.  ( S  X.  S )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S ) ) )
21biimpi 119 . . . . . 6  |-  ( z  e.  ( S  X.  S )  ->  (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( ( 1st `  z )  e.  S  /\  ( 2nd `  z )  e.  S
) ) )
32adantl 275 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( ( 1st `  z )  e.  S  /\  ( 2nd `  z )  e.  S
) ) )
43simpld 111 . . . 4  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
53simprd 113 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  (
( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S ) )
6 oprssdmm.f . . . . . . . . 9  |-  ( ph  ->  Rel  F )
76adantr 274 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  Rel  F )
8 eleq2 2221 . . . . . . . . . 10  |-  ( u  =  ( F `  <. x ,  y >.
)  ->  ( v  e.  u  <->  v  e.  ( F `  <. x ,  y >. )
) )
98exbidv 1805 . . . . . . . . 9  |-  ( u  =  ( F `  <. x ,  y >.
)  ->  ( E. v  v  e.  u  <->  E. v  v  e.  ( F `  <. x ,  y >. )
) )
10 oprssdmm.m . . . . . . . . . . 11  |-  ( (
ph  /\  u  e.  S )  ->  E. v 
v  e.  u )
1110ralrimiva 2530 . . . . . . . . . 10  |-  ( ph  ->  A. u  e.  S  E. v  v  e.  u )
1211adantr 274 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  A. u  e.  S  E. v  v  e.  u )
13 df-ov 5824 . . . . . . . . . 10  |-  ( x F y )  =  ( F `  <. x ,  y >. )
14 oprssdmm.cl . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x F y )  e.  S )
1513, 14eqeltrrid 2245 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  <. x ,  y >. )  e.  S )
169, 12, 15rspcdva 2821 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  E. v  v  e.  ( F `  <. x ,  y >. )
)
17 relelfvdm 5499 . . . . . . . . . 10  |-  ( ( Rel  F  /\  v  e.  ( F `  <. x ,  y >. )
)  ->  <. x ,  y >.  e.  dom  F )
1817ex 114 . . . . . . . . 9  |-  ( Rel 
F  ->  ( v  e.  ( F `  <. x ,  y >. )  -> 
<. x ,  y >.  e.  dom  F ) )
1918exlimdv 1799 . . . . . . . 8  |-  ( Rel 
F  ->  ( E. v  v  e.  ( F `  <. x ,  y >. )  ->  <. x ,  y >.  e.  dom  F ) )
207, 16, 19sylc 62 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  <. x ,  y >.  e.  dom  F )
2120ralrimivva 2539 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )
2221adantr 274 . . . . 5  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )
23 opeq1 3741 . . . . . . 7  |-  ( x  =  ( 1st `  z
)  ->  <. x ,  y >.  =  <. ( 1st `  z ) ,  y >. )
2423eleq1d 2226 . . . . . 6  |-  ( x  =  ( 1st `  z
)  ->  ( <. x ,  y >.  e.  dom  F  <->  <. ( 1st `  z
) ,  y >.  e.  dom  F ) )
25 opeq2 3742 . . . . . . 7  |-  ( y  =  ( 2nd `  z
)  ->  <. ( 1st `  z ) ,  y
>.  =  <. ( 1st `  z ) ,  ( 2nd `  z )
>. )
2625eleq1d 2226 . . . . . 6  |-  ( y  =  ( 2nd `  z
)  ->  ( <. ( 1st `  z ) ,  y >.  e.  dom  F  <->  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  e.  dom  F ) )
2724, 26rspc2va 2830 . . . . 5  |-  ( ( ( ( 1st `  z
)  e.  S  /\  ( 2nd `  z )  e.  S )  /\  A. x  e.  S  A. y  e.  S  <. x ,  y >.  e.  dom  F )  ->  <. ( 1st `  z ) ,  ( 2nd `  z )
>.  e.  dom  F )
285, 22, 27syl2anc 409 . . . 4  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  e.  dom  F
)
294, 28eqeltrd 2234 . . 3  |-  ( (
ph  /\  z  e.  ( S  X.  S
) )  ->  z  e.  dom  F )
3029ex 114 . 2  |-  ( ph  ->  ( z  e.  ( S  X.  S )  ->  z  e.  dom  F ) )
3130ssrdv 3134 1  |-  ( ph  ->  ( S  X.  S
)  C_  dom  F )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1335   E.wex 1472    e. wcel 2128   A.wral 2435    C_ wss 3102   <.cop 3563    X. cxp 4583   dom cdm 4585   Rel wrel 4590   ` cfv 5169  (class class class)co 5821   1stc1st 6083   2ndc2nd 6084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4082  ax-pow 4135  ax-pr 4169  ax-un 4393
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-br 3966  df-opab 4026  df-mpt 4027  df-id 4253  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-iota 5134  df-fun 5171  df-fv 5177  df-ov 5824  df-1st 6085  df-2nd 6086
This theorem is referenced by:  axaddf  7782  axmulf  7783
  Copyright terms: Public domain W3C validator