ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1vrnfibi Unicode version

Theorem f1vrnfibi 7108
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 7107. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1vrnfibi  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )

Proof of Theorem f1vrnfibi
StepHypRef Expression
1 f1dm 5535 . . . 4  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
2 dmexg 4987 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 eleq1 2292 . . . . . 6  |-  ( A  =  dom  F  -> 
( A  e.  _V  <->  dom 
F  e.  _V )
)
43eqcoms 2232 . . . . 5  |-  ( dom 
F  =  A  -> 
( A  e.  _V  <->  dom 
F  e.  _V )
)
52, 4imbitrrid 156 . . . 4  |-  ( dom 
F  =  A  -> 
( F  e.  V  ->  A  e.  _V )
)
61, 5syl 14 . . 3  |-  ( F : A -1-1-> B  -> 
( F  e.  V  ->  A  e.  _V )
)
76impcom 125 . 2  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  A  e.  _V )
8 f1dmvrnfibi 7107 . 2  |-  ( ( A  e.  _V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
97, 8sylancom 420 1  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799   dom cdm 4718   ran crn 4719   -1-1->wf1 5314   Fincfn 6885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-er 6678  df-en 6886  df-fin 6888
This theorem is referenced by:  negfi  11734
  Copyright terms: Public domain W3C validator