ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  f1vrnfibi Unicode version

Theorem f1vrnfibi 6918
Description: A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 6917. (Contributed by AV, 10-Jan-2020.)
Assertion
Ref Expression
f1vrnfibi  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )

Proof of Theorem f1vrnfibi
StepHypRef Expression
1 f1dm 5406 . . . 4  |-  ( F : A -1-1-> B  ->  dom  F  =  A )
2 dmexg 4873 . . . . 5  |-  ( F  e.  V  ->  dom  F  e.  _V )
3 eleq1 2233 . . . . . 6  |-  ( A  =  dom  F  -> 
( A  e.  _V  <->  dom 
F  e.  _V )
)
43eqcoms 2173 . . . . 5  |-  ( dom 
F  =  A  -> 
( A  e.  _V  <->  dom 
F  e.  _V )
)
52, 4syl5ibr 155 . . . 4  |-  ( dom 
F  =  A  -> 
( F  e.  V  ->  A  e.  _V )
)
61, 5syl 14 . . 3  |-  ( F : A -1-1-> B  -> 
( F  e.  V  ->  A  e.  _V )
)
76impcom 124 . 2  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  A  e.  _V )
8 f1dmvrnfibi 6917 . 2  |-  ( ( A  e.  _V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
97, 8sylancom 418 1  |-  ( ( F  e.  V  /\  F : A -1-1-> B )  ->  ( F  e. 
Fin 
<->  ran  F  e.  Fin ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730   dom cdm 4609   ran crn 4610   -1-1->wf1 5193   Fincfn 6714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-iord 4349  df-on 4351  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-1st 6116  df-2nd 6117  df-1o 6392  df-er 6509  df-en 6715  df-fin 6717
This theorem is referenced by:  negfi  11178
  Copyright terms: Public domain W3C validator