| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnoa | GIF version | ||
| Description: Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fnoa | ⊢ +o Fn (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oadd 6572 | . 2 ⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) | |
| 2 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | oafnex 6598 | . . . 4 ⊢ (𝑧 ∈ V ↦ suc 𝑧) Fn V | |
| 5 | 3, 4 | rdgexg 6541 | . . 3 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V |
| 7 | 1, 6 | fnmpoi 6355 | 1 ⊢ +o Fn (On × On) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4145 Oncon0 4454 suc csuc 4456 × cxp 4717 Fn wfn 5313 ‘cfv 5318 reccrdg 6521 +o coa 6565 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-oprab 6011 df-mpo 6012 df-1st 6292 df-2nd 6293 df-recs 6457 df-irdg 6522 df-oadd 6572 |
| This theorem is referenced by: dmaddpi 7520 |
| Copyright terms: Public domain | W3C validator |