| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fnoa | GIF version | ||
| Description: Functionality and domain of ordinal addition. (Contributed by NM, 26-Aug-1995.) (Proof shortened by Mario Carneiro, 3-Jul-2019.) |
| Ref | Expression |
|---|---|
| fnoa | ⊢ +o Fn (On × On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-oadd 6556 | . 2 ⊢ +o = (𝑥 ∈ On, 𝑦 ∈ On ↦ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦)) | |
| 2 | vex 2802 | . . 3 ⊢ 𝑦 ∈ V | |
| 3 | vex 2802 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | oafnex 6580 | . . . 4 ⊢ (𝑧 ∈ V ↦ suc 𝑧) Fn V | |
| 5 | 3, 4 | rdgexg 6525 | . . 3 ⊢ (𝑦 ∈ V → (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ (rec((𝑧 ∈ V ↦ suc 𝑧), 𝑥)‘𝑦) ∈ V |
| 7 | 1, 6 | fnmpoi 6339 | 1 ⊢ +o Fn (On × On) |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2200 Vcvv 2799 ↦ cmpt 4144 Oncon0 4451 suc csuc 4453 × cxp 4714 Fn wfn 5309 ‘cfv 5314 reccrdg 6505 +o coa 6549 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-suc 4459 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-irdg 6506 df-oadd 6556 |
| This theorem is referenced by: dmaddpi 7500 |
| Copyright terms: Public domain | W3C validator |