| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > foelrn | GIF version | ||
| Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.) |
| Ref | Expression |
|---|---|
| foelrn | ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | foima2 5875 | . 2 ⊢ (𝐹:𝐴–onto→𝐵 → (𝐶 ∈ 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥))) | |
| 2 | 1 | biimpa 296 | 1 ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ∃wrex 2509 –onto→wfo 5316 ‘cfv 5318 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-fo 5324 df-fv 5326 |
| This theorem is referenced by: foco2 5877 ctmlemr 7275 ctm 7276 ctssdclemn0 7277 ctssdccl 7278 ctssdc 7280 enumctlemm 7281 fodju0 7314 exmidfodomrlemr 7380 exmidfodomrlemrALT 7381 ennnfonelemrn 12990 ctinf 13001 ctiunctlemfo 13010 znidom 14621 znrrg 14624 subctctexmid 16366 pw1nct 16369 |
| Copyright terms: Public domain | W3C validator |