ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelrn GIF version

Theorem foelrn 5471
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foelrn ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem foelrn
StepHypRef Expression
1 foima2 5470 . 2 (𝐹:𝐴onto𝐵 → (𝐶𝐵 ↔ ∃𝑥𝐴 𝐶 = (𝐹𝑥)))
21biimpa 290 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wrex 2354  ontowfo 4967  cfv 4969
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3922  ax-pow 3974  ax-pr 4000
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2614  df-sbc 2827  df-un 2988  df-in 2990  df-ss 2997  df-pw 3408  df-sn 3428  df-pr 3429  df-op 3431  df-uni 3628  df-br 3812  df-opab 3866  df-id 4084  df-xp 4407  df-rel 4408  df-cnv 4409  df-co 4410  df-dm 4411  df-rn 4412  df-res 4413  df-ima 4414  df-iota 4934  df-fun 4971  df-fn 4972  df-f 4973  df-fo 4975  df-fv 4977
This theorem is referenced by:  foco2  5473  fodjuomnilem0  6707  exmidfodomrlemr  6731  exmidfodomrlemrALT  6732
  Copyright terms: Public domain W3C validator