ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foelrn GIF version

Theorem foelrn 5821
Description: Property of a surjective function. (Contributed by Jeff Madsen, 4-Jan-2011.) (Proof shortened by BJ, 6-Jul-2022.)
Assertion
Ref Expression
foelrn ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem foelrn
StepHypRef Expression
1 foima2 5820 . 2 (𝐹:𝐴onto𝐵 → (𝐶𝐵 ↔ ∃𝑥𝐴 𝐶 = (𝐹𝑥)))
21biimpa 296 1 ((𝐹:𝐴onto𝐵𝐶𝐵) → ∃𝑥𝐴 𝐶 = (𝐹𝑥))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2176  wrex 2485  ontowfo 5269  cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fo 5277  df-fv 5279
This theorem is referenced by:  foco2  5822  ctmlemr  7210  ctm  7211  ctssdclemn0  7212  ctssdccl  7213  ctssdc  7215  enumctlemm  7216  fodju0  7249  exmidfodomrlemr  7310  exmidfodomrlemrALT  7311  ennnfonelemrn  12790  ctinf  12801  ctiunctlemfo  12810  znidom  14419  znrrg  14422  subctctexmid  15937  pw1nct  15940
  Copyright terms: Public domain W3C validator