ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecfcl Unicode version

Theorem frecfcl 6551
Description: Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.)
Assertion
Ref Expression
frecfcl  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Distinct variable groups:    z, F    z, S
Allowed substitution hint:    A( z)

Proof of Theorem frecfcl
Dummy variables  g  m  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . 2  |- recs ( ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )  = recs (
( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } ) )
21frecfcllem 6550 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S )  -> frec ( F ,  A ) : om --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799   (/)c0 3491    |-> cmpt 4145   suc csuc 4456   omcom 4682   dom cdm 4719   -->wf 5314   ` cfv 5318  recscrecs 6450  freccfrec 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-recs 6451  df-frec 6537
This theorem is referenced by:  frecsuclem  6552  frecuzrdgrcl  10632  frecuzrdgrclt  10637  seq3val  10682  seqvalcd  10683
  Copyright terms: Public domain W3C validator