Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > frecfcl | Unicode version |
Description: Finite recursion yields a function on the natural numbers. (Contributed by Jim Kingdon, 30-Mar-2022.) |
Ref | Expression |
---|---|
frecfcl | frec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2154 | . 2 recs recs | |
2 | 1 | frecfcllem 6341 | 1 frec |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wo 698 wceq 1332 wcel 2125 cab 2140 wral 2432 wrex 2433 cvv 2709 c0 3390 cmpt 4021 csuc 4320 com 4543 cdm 4579 wf 5159 cfv 5163 recscrecs 6241 freccfrec 6327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-13 2127 ax-14 2128 ax-ext 2136 ax-coll 4075 ax-sep 4078 ax-nul 4086 ax-pow 4130 ax-pr 4164 ax-un 4388 ax-setind 4490 ax-iinf 4541 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-fal 1338 df-nf 1438 df-sb 1740 df-eu 2006 df-mo 2007 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-ne 2325 df-ral 2437 df-rex 2438 df-reu 2439 df-rab 2441 df-v 2711 df-sbc 2934 df-csb 3028 df-dif 3100 df-un 3102 df-in 3104 df-ss 3111 df-nul 3391 df-pw 3541 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-int 3804 df-iun 3847 df-br 3962 df-opab 4022 df-mpt 4023 df-tr 4059 df-id 4248 df-iord 4321 df-on 4323 df-ilim 4324 df-suc 4326 df-iom 4544 df-xp 4585 df-rel 4586 df-cnv 4587 df-co 4588 df-dm 4589 df-rn 4590 df-res 4591 df-ima 4592 df-iota 5128 df-fun 5165 df-fn 5166 df-f 5167 df-f1 5168 df-fo 5169 df-f1o 5170 df-fv 5171 df-recs 6242 df-frec 6328 |
This theorem is referenced by: frecsuclem 6343 frecuzrdgrcl 10287 frecuzrdgrclt 10292 seq3val 10335 seqvalcd 10336 |
Copyright terms: Public domain | W3C validator |