ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr Unicode version

Theorem frectfr 6376
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions  F  Fn  _V and  A  e.  V on frec ( F ,  A ), we want to be able to apply tfri1d 6311 or tfri2d 6312, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frectfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Distinct variable groups:    g, m, x, y, A    z, g, F, m, x, y    g, V, m, y
Allowed substitution hints:    A( z)    G( x, y, z, g, m)    V( x, z)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2733 . . . . . . . 8  |-  g  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  g  e.  _V )
3 simpl 108 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. z
( F `  z
)  e.  _V )
4 simpr 109 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A  e.  V )
52, 3, 4frecabex 6374 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
65ralrimivw 2544 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. g  e.  _V  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
7 frectfr.1 . . . . . 6  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87fnmpt 5322 . . . . 5  |-  ( A. g  e.  _V  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  G  Fn  _V )
96, 8syl 14 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  G  Fn  _V )
10 vex 2733 . . . 4  |-  y  e. 
_V
11 funfvex 5511 . . . . 5  |-  ( ( Fun  G  /\  y  e.  dom  G )  -> 
( G `  y
)  e.  _V )
1211funfni 5296 . . . 4  |-  ( ( G  Fn  _V  /\  y  e.  _V )  ->  ( G `  y
)  e.  _V )
139, 10, 12sylancl 411 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( G `  y )  e.  _V )
147funmpt2 5235 . . 3  |-  Fun  G
1513, 14jctil 310 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  G  /\  ( G `
 y )  e. 
_V ) )
1615alrimiv 1867 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 703   A.wal 1346    = wceq 1348    e. wcel 2141   {cab 2156   A.wral 2448   E.wrex 2449   _Vcvv 2730   (/)c0 3414    |-> cmpt 4048   suc csuc 4348   omcom 4572   dom cdm 4609   Fun wfun 5190    Fn wfn 5191   ` cfv 5196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-iinf 4570
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204
This theorem is referenced by:  frecfnom  6377
  Copyright terms: Public domain W3C validator