ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr Unicode version

Theorem frectfr 6546
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions  F  Fn  _V and  A  e.  V on frec ( F ,  A ), we want to be able to apply tfri1d 6481 or tfri2d 6482, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
Assertion
Ref Expression
frectfr  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Distinct variable groups:    g, m, x, y, A    z, g, F, m, x, y    g, V, m, y
Allowed substitution hints:    A( z)    G( x, y, z, g, m)    V( x, z)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2802 . . . . . . . 8  |-  g  e. 
_V
21a1i 9 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  g  e.  _V )
3 simpl 109 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. z
( F `  z
)  e.  _V )
4 simpr 110 . . . . . . 7  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A  e.  V )
52, 3, 4frecabex 6544 . . . . . 6  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
65ralrimivw 2604 . . . . 5  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. g  e.  _V  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V )
7 frectfr.1 . . . . . 6  |-  G  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
87fnmpt 5450 . . . . 5  |-  ( A. g  e.  _V  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  e.  _V  ->  G  Fn  _V )
96, 8syl 14 . . . 4  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  G  Fn  _V )
10 vex 2802 . . . 4  |-  y  e. 
_V
11 funfvex 5644 . . . . 5  |-  ( ( Fun  G  /\  y  e.  dom  G )  -> 
( G `  y
)  e.  _V )
1211funfni 5423 . . . 4  |-  ( ( G  Fn  _V  /\  y  e.  _V )  ->  ( G `  y
)  e.  _V )
139, 10, 12sylancl 413 . . 3  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( G `  y )  e.  _V )
147funmpt2 5357 . . 3  |-  Fun  G
1513, 14jctil 312 . 2  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  ( Fun  G  /\  ( G `
 y )  e. 
_V ) )
1615alrimiv 1920 1  |-  ( ( A. z ( F `
 z )  e. 
_V  /\  A  e.  V )  ->  A. y
( Fun  G  /\  ( G `  y )  e.  _V ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 713   A.wal 1393    = wceq 1395    e. wcel 2200   {cab 2215   A.wral 2508   E.wrex 2509   _Vcvv 2799   (/)c0 3491    |-> cmpt 4145   suc csuc 4456   omcom 4682   dom cdm 4719   Fun wfun 5312    Fn wfn 5313   ` cfv 5318
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-iinf 4680
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326
This theorem is referenced by:  frecfnom  6547
  Copyright terms: Public domain W3C validator