ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr GIF version

Theorem frectfr 6509
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions 𝐹 Fn V and 𝐴𝑉 on frec(𝐹, 𝐴), we want to be able to apply tfri1d 6444 or tfri2d 6445, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frectfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Distinct variable groups:   𝑔,𝑚,𝑥,𝑦,𝐴   𝑧,𝑔,𝐹,𝑚,𝑥,𝑦   𝑔,𝑉,𝑚,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐺(𝑥,𝑦,𝑧,𝑔,𝑚)   𝑉(𝑥,𝑧)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2779 . . . . . . . 8 𝑔 ∈ V
21a1i 9 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝑔 ∈ V)
3 simpl 109 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑧(𝐹𝑧) ∈ V)
4 simpr 110 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐴𝑉)
52, 3, 4frecabex 6507 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
65ralrimivw 2582 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
7 frectfr.1 . . . . . 6 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87fnmpt 5422 . . . . 5 (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V → 𝐺 Fn V)
96, 8syl 14 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐺 Fn V)
10 vex 2779 . . . 4 𝑦 ∈ V
11 funfvex 5616 . . . . 5 ((Fun 𝐺𝑦 ∈ dom 𝐺) → (𝐺𝑦) ∈ V)
1211funfni 5395 . . . 4 ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺𝑦) ∈ V)
139, 10, 12sylancl 413 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (𝐺𝑦) ∈ V)
147funmpt2 5329 . . 3 Fun 𝐺
1513, 14jctil 312 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
1615alrimiv 1898 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 710  wal 1371   = wceq 1373  wcel 2178  {cab 2193  wral 2486  wrex 2487  Vcvv 2776  c0 3468  cmpt 4121  suc csuc 4430  ωcom 4656  dom cdm 4693  Fun wfun 5284   Fn wfn 5285  cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298
This theorem is referenced by:  frecfnom  6510
  Copyright terms: Public domain W3C validator