| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frectfr | GIF version | ||
| Description: Lemma to connect
transfinite recursion theorems with finite recursion.
That is, given the conditions 𝐹 Fn V and 𝐴 ∈ 𝑉 on
frec(𝐹, 𝐴), we want to be able to apply tfri1d 6444 or tfri2d 6445,
and this lemma lets us satisfy hypotheses of those theorems.
(Contributed by Jim Kingdon, 15-Aug-2019.) |
| Ref | Expression |
|---|---|
| frectfr.1 | ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| Ref | Expression |
|---|---|
| frectfr | ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2779 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
| 2 | 1 | a1i 9 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑔 ∈ V) |
| 3 | simpl 109 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑧(𝐹‘𝑧) ∈ V) | |
| 4 | simpr 110 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 5 | 2, 3, 4 | frecabex 6507 | . . . . . 6 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 6 | 5 | ralrimivw 2582 | . . . . 5 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 7 | frectfr.1 | . . . . . 6 ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | |
| 8 | 7 | fnmpt 5422 | . . . . 5 ⊢ (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → 𝐺 Fn V) |
| 9 | 6, 8 | syl 14 | . . . 4 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn V) |
| 10 | vex 2779 | . . . 4 ⊢ 𝑦 ∈ V | |
| 11 | funfvex 5616 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑦 ∈ dom 𝐺) → (𝐺‘𝑦) ∈ V) | |
| 12 | 11 | funfni 5395 | . . . 4 ⊢ ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺‘𝑦) ∈ V) |
| 13 | 9, 10, 12 | sylancl 413 | . . 3 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺‘𝑦) ∈ V) |
| 14 | 7 | funmpt2 5329 | . . 3 ⊢ Fun 𝐺 |
| 15 | 13, 14 | jctil 312 | . 2 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
| 16 | 15 | alrimiv 1898 | 1 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 ∀wal 1371 = wceq 1373 ∈ wcel 2178 {cab 2193 ∀wral 2486 ∃wrex 2487 Vcvv 2776 ∅c0 3468 ↦ cmpt 4121 suc csuc 4430 ωcom 4656 dom cdm 4693 Fun wfun 5284 Fn wfn 5285 ‘cfv 5290 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-iinf 4654 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 |
| This theorem is referenced by: frecfnom 6510 |
| Copyright terms: Public domain | W3C validator |