ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr GIF version

Theorem frectfr 6458
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions 𝐹 Fn V and 𝐴𝑉 on frec(𝐹, 𝐴), we want to be able to apply tfri1d 6393 or tfri2d 6394, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frectfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Distinct variable groups:   𝑔,𝑚,𝑥,𝑦,𝐴   𝑧,𝑔,𝐹,𝑚,𝑥,𝑦   𝑔,𝑉,𝑚,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐺(𝑥,𝑦,𝑧,𝑔,𝑚)   𝑉(𝑥,𝑧)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2766 . . . . . . . 8 𝑔 ∈ V
21a1i 9 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝑔 ∈ V)
3 simpl 109 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑧(𝐹𝑧) ∈ V)
4 simpr 110 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐴𝑉)
52, 3, 4frecabex 6456 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
65ralrimivw 2571 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
7 frectfr.1 . . . . . 6 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87fnmpt 5384 . . . . 5 (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V → 𝐺 Fn V)
96, 8syl 14 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐺 Fn V)
10 vex 2766 . . . 4 𝑦 ∈ V
11 funfvex 5575 . . . . 5 ((Fun 𝐺𝑦 ∈ dom 𝐺) → (𝐺𝑦) ∈ V)
1211funfni 5358 . . . 4 ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺𝑦) ∈ V)
139, 10, 12sylancl 413 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (𝐺𝑦) ∈ V)
147funmpt2 5297 . . 3 Fun 𝐺
1513, 14jctil 312 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
1615alrimiv 1888 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  c0 3450  cmpt 4094  suc csuc 4400  ωcom 4626  dom cdm 4663  Fun wfun 5252   Fn wfn 5253  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266
This theorem is referenced by:  frecfnom  6459
  Copyright terms: Public domain W3C validator