| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frectfr | GIF version | ||
| Description: Lemma to connect
transfinite recursion theorems with finite recursion.
That is, given the conditions 𝐹 Fn V and 𝐴 ∈ 𝑉 on
frec(𝐹, 𝐴), we want to be able to apply tfri1d 6421 or tfri2d 6422,
and this lemma lets us satisfy hypotheses of those theorems.
(Contributed by Jim Kingdon, 15-Aug-2019.) |
| Ref | Expression |
|---|---|
| frectfr.1 | ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
| Ref | Expression |
|---|---|
| frectfr | ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 2775 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
| 2 | 1 | a1i 9 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑔 ∈ V) |
| 3 | simpl 109 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑧(𝐹‘𝑧) ∈ V) | |
| 4 | simpr 110 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
| 5 | 2, 3, 4 | frecabex 6484 | . . . . . 6 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 6 | 5 | ralrimivw 2580 | . . . . 5 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
| 7 | frectfr.1 | . . . . . 6 ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | |
| 8 | 7 | fnmpt 5402 | . . . . 5 ⊢ (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → 𝐺 Fn V) |
| 9 | 6, 8 | syl 14 | . . . 4 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn V) |
| 10 | vex 2775 | . . . 4 ⊢ 𝑦 ∈ V | |
| 11 | funfvex 5593 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑦 ∈ dom 𝐺) → (𝐺‘𝑦) ∈ V) | |
| 12 | 11 | funfni 5376 | . . . 4 ⊢ ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺‘𝑦) ∈ V) |
| 13 | 9, 10, 12 | sylancl 413 | . . 3 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺‘𝑦) ∈ V) |
| 14 | 7 | funmpt2 5310 | . . 3 ⊢ Fun 𝐺 |
| 15 | 13, 14 | jctil 312 | . 2 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
| 16 | 15 | alrimiv 1897 | 1 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ∨ wo 710 ∀wal 1371 = wceq 1373 ∈ wcel 2176 {cab 2191 ∀wral 2484 ∃wrex 2485 Vcvv 2772 ∅c0 3460 ↦ cmpt 4105 suc csuc 4412 ωcom 4638 dom cdm 4675 Fun wfun 5265 Fn wfn 5266 ‘cfv 5271 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-iinf 4636 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 |
| This theorem is referenced by: frecfnom 6487 |
| Copyright terms: Public domain | W3C validator |