![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > frectfr | GIF version |
Description: Lemma to connect
transfinite recursion theorems with finite recursion.
That is, given the conditions 𝐹 Fn V and 𝐴 ∈ 𝑉 on
frec(𝐹, 𝐴), we want to be able to apply tfri1d 6184 or tfri2d 6185,
and this lemma lets us satisfy hypotheses of those theorems.
(Contributed by Jim Kingdon, 15-Aug-2019.) |
Ref | Expression |
---|---|
frectfr.1 | ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) |
Ref | Expression |
---|---|
frectfr | ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2658 | . . . . . . . 8 ⊢ 𝑔 ∈ V | |
2 | 1 | a1i 9 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝑔 ∈ V) |
3 | simpl 108 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑧(𝐹‘𝑧) ∈ V) | |
4 | simpr 109 | . . . . . . 7 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐴 ∈ 𝑉) | |
5 | 2, 3, 4 | frecabex 6247 | . . . . . 6 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
6 | 5 | ralrimivw 2478 | . . . . 5 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V) |
7 | frectfr.1 | . . . . . 6 ⊢ 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))}) | |
8 | 7 | fnmpt 5205 | . . . . 5 ⊢ (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚 ∧ 𝑥 ∈ (𝐹‘(𝑔‘𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥 ∈ 𝐴))} ∈ V → 𝐺 Fn V) |
9 | 6, 8 | syl 14 | . . . 4 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → 𝐺 Fn V) |
10 | vex 2658 | . . . 4 ⊢ 𝑦 ∈ V | |
11 | funfvex 5390 | . . . . 5 ⊢ ((Fun 𝐺 ∧ 𝑦 ∈ dom 𝐺) → (𝐺‘𝑦) ∈ V) | |
12 | 11 | funfni 5179 | . . . 4 ⊢ ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺‘𝑦) ∈ V) |
13 | 9, 10, 12 | sylancl 407 | . . 3 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (𝐺‘𝑦) ∈ V) |
14 | 7 | funmpt2 5118 | . . 3 ⊢ Fun 𝐺 |
15 | 13, 14 | jctil 308 | . 2 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → (Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
16 | 15 | alrimiv 1826 | 1 ⊢ ((∀𝑧(𝐹‘𝑧) ∈ V ∧ 𝐴 ∈ 𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺‘𝑦) ∈ V)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ∨ wo 680 ∀wal 1310 = wceq 1312 ∈ wcel 1461 {cab 2099 ∀wral 2388 ∃wrex 2389 Vcvv 2655 ∅c0 3327 ↦ cmpt 3947 suc csuc 4245 ωcom 4462 dom cdm 4497 Fun wfun 5073 Fn wfn 5074 ‘cfv 5079 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 681 ax-5 1404 ax-7 1405 ax-gen 1406 ax-ie1 1450 ax-ie2 1451 ax-8 1463 ax-10 1464 ax-11 1465 ax-i12 1466 ax-bndl 1467 ax-4 1468 ax-13 1472 ax-14 1473 ax-17 1487 ax-i9 1491 ax-ial 1495 ax-i5r 1496 ax-ext 2095 ax-coll 4001 ax-sep 4004 ax-pow 4056 ax-pr 4089 ax-un 4313 ax-iinf 4460 |
This theorem depends on definitions: df-bi 116 df-3an 945 df-tru 1315 df-nf 1418 df-sb 1717 df-eu 1976 df-mo 1977 df-clab 2100 df-cleq 2106 df-clel 2109 df-nfc 2242 df-ral 2393 df-rex 2394 df-reu 2395 df-rab 2397 df-v 2657 df-sbc 2877 df-csb 2970 df-un 3039 df-in 3041 df-ss 3048 df-pw 3476 df-sn 3497 df-pr 3498 df-op 3500 df-uni 3701 df-int 3736 df-iun 3779 df-br 3894 df-opab 3948 df-mpt 3949 df-id 4173 df-iom 4463 df-xp 4503 df-rel 4504 df-cnv 4505 df-co 4506 df-dm 4507 df-rn 4508 df-res 4509 df-ima 4510 df-iota 5044 df-fun 5081 df-fn 5082 df-f 5083 df-f1 5084 df-fo 5085 df-f1o 5086 df-fv 5087 |
This theorem is referenced by: frecfnom 6250 |
Copyright terms: Public domain | W3C validator |