ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frectfr GIF version

Theorem frectfr 6467
Description: Lemma to connect transfinite recursion theorems with finite recursion. That is, given the conditions 𝐹 Fn V and 𝐴𝑉 on frec(𝐹, 𝐴), we want to be able to apply tfri1d 6402 or tfri2d 6403, and this lemma lets us satisfy hypotheses of those theorems.

(Contributed by Jim Kingdon, 15-Aug-2019.)

Hypothesis
Ref Expression
frectfr.1 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
Assertion
Ref Expression
frectfr ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Distinct variable groups:   𝑔,𝑚,𝑥,𝑦,𝐴   𝑧,𝑔,𝐹,𝑚,𝑥,𝑦   𝑔,𝑉,𝑚,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐺(𝑥,𝑦,𝑧,𝑔,𝑚)   𝑉(𝑥,𝑧)

Proof of Theorem frectfr
StepHypRef Expression
1 vex 2766 . . . . . . . 8 𝑔 ∈ V
21a1i 9 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝑔 ∈ V)
3 simpl 109 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑧(𝐹𝑧) ∈ V)
4 simpr 110 . . . . . . 7 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐴𝑉)
52, 3, 4frecabex 6465 . . . . . 6 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
65ralrimivw 2571 . . . . 5 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V)
7 frectfr.1 . . . . . 6 𝐺 = (𝑔 ∈ V ↦ {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))})
87fnmpt 5387 . . . . 5 (∀𝑔 ∈ V {𝑥 ∣ (∃𝑚 ∈ ω (dom 𝑔 = suc 𝑚𝑥 ∈ (𝐹‘(𝑔𝑚))) ∨ (dom 𝑔 = ∅ ∧ 𝑥𝐴))} ∈ V → 𝐺 Fn V)
96, 8syl 14 . . . 4 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → 𝐺 Fn V)
10 vex 2766 . . . 4 𝑦 ∈ V
11 funfvex 5578 . . . . 5 ((Fun 𝐺𝑦 ∈ dom 𝐺) → (𝐺𝑦) ∈ V)
1211funfni 5361 . . . 4 ((𝐺 Fn V ∧ 𝑦 ∈ V) → (𝐺𝑦) ∈ V)
139, 10, 12sylancl 413 . . 3 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (𝐺𝑦) ∈ V)
147funmpt2 5298 . . 3 Fun 𝐺
1513, 14jctil 312 . 2 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → (Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
1615alrimiv 1888 1 ((∀𝑧(𝐹𝑧) ∈ V ∧ 𝐴𝑉) → ∀𝑦(Fun 𝐺 ∧ (𝐺𝑦) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wo 709  wal 1362   = wceq 1364  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  c0 3451  cmpt 4095  suc csuc 4401  ωcom 4627  dom cdm 4664  Fun wfun 5253   Fn wfn 5254  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267
This theorem is referenced by:  frecfnom  6468
  Copyright terms: Public domain W3C validator