ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funvtxdm2domval Unicode version

Theorem funvtxdm2domval 15824
Description: The set of vertices of an extensible structure with (at least) two slots. (Contributed by AV, 12-Oct-2020.) (Revised by Jim Kingdon, 11-Dec-2025.)
Assertion
Ref Expression
funvtxdm2domval  |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/)
} )  /\  2o  ~<_  dom  G )  ->  (Vtx `  G )  =  (
Base `  G )
)

Proof of Theorem funvtxdm2domval
StepHypRef Expression
1 vtxvalg 15811 . . 3  |-  ( G  e.  V  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )
213ad2ant1 1042 . 2  |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/)
} )  /\  2o  ~<_  dom  G )  ->  (Vtx `  G )  =  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) ) )
3 fundm2domnop0 11062 . . . 4  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  -.  G  e.  ( _V  X.  _V ) )
43iffalsed 3612 . . 3  |-  ( ( Fun  ( G  \  { (/) } )  /\  2o 
~<_  dom  G )  ->  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )  =  ( Base `  G
) )
543adant1 1039 . 2  |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/)
} )  /\  2o  ~<_  dom  G )  ->  if ( G  e.  ( _V  X.  _V ) ,  ( 1st `  G
) ,  ( Base `  G ) )  =  ( Base `  G
) )
62, 5eqtrd 2262 1  |-  ( ( G  e.  V  /\  Fun  ( G  \  { (/)
} )  /\  2o  ~<_  dom  G )  ->  (Vtx `  G )  =  (
Base `  G )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   _Vcvv 2799    \ cdif 3194   (/)c0 3491   ifcif 3602   {csn 3666   class class class wbr 4082    X. cxp 4716   dom cdm 4718   Fun wfun 5311   ` cfv 5317   1stc1st 6282   2oc2o 6554    ~<_ cdom 6884   Basecbs 13027  Vtxcvtx 15807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-cnex 8086  ax-resscn 8087  ax-1re 8089  ax-addrcl 8092
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-fv 5325  df-1st 6284  df-1o 6560  df-2o 6561  df-dom 6887  df-inn 9107  df-ndx 13030  df-slot 13031  df-base 13033  df-vtx 15809
This theorem is referenced by:  basvtxval2dom  15829  grstructd2dom  15843
  Copyright terms: Public domain W3C validator