ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grstructd2dom Unicode version

Theorem grstructd2dom 15843
Description: If any representation of a graph with vertices  V and edges  E has a certain property  ps, then any structure with base set  V and value  E in the slot for edge functions (which is such a representation of a graph with vertices  V and edges  E) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
Hypotheses
Ref Expression
gropd.g  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
gropd.v  |-  ( ph  ->  V  e.  U )
gropd.e  |-  ( ph  ->  E  e.  W )
grstructd.s  |-  ( ph  ->  S  e.  X )
grstructd.f  |-  ( ph  ->  Fun  ( S  \  { (/) } ) )
grstructd2dom.d  |-  ( ph  ->  2o  ~<_  dom  S )
grstructd.b  |-  ( ph  ->  ( Base `  S
)  =  V )
grstructd.e  |-  ( ph  ->  (.ef `  S )  =  E )
Assertion
Ref Expression
grstructd2dom  |-  ( ph  ->  [. S  /  g ]. ps )
Distinct variable groups:    g, E    g, V    ph, g    S, g
Allowed substitution hints:    ps( g)    U( g)    W( g)    X( g)

Proof of Theorem grstructd2dom
StepHypRef Expression
1 grstructd.s . 2  |-  ( ph  ->  S  e.  X )
2 gropd.g . 2  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
3 grstructd.f . . . . 5  |-  ( ph  ->  Fun  ( S  \  { (/) } ) )
4 grstructd2dom.d . . . . 5  |-  ( ph  ->  2o  ~<_  dom  S )
5 funvtxdm2domval 15824 . . . . 5  |-  ( ( S  e.  X  /\  Fun  ( S  \  { (/)
} )  /\  2o  ~<_  dom  S )  ->  (Vtx `  S )  =  (
Base `  S )
)
61, 3, 4, 5syl3anc 1271 . . . 4  |-  ( ph  ->  (Vtx `  S )  =  ( Base `  S
) )
7 grstructd.b . . . 4  |-  ( ph  ->  ( Base `  S
)  =  V )
86, 7eqtrd 2262 . . 3  |-  ( ph  ->  (Vtx `  S )  =  V )
9 funiedgdm2domval 15825 . . . . 5  |-  ( ( S  e.  X  /\  Fun  ( S  \  { (/)
} )  /\  2o  ~<_  dom  S )  ->  (iEdg `  S )  =  (.ef
`  S ) )
101, 3, 4, 9syl3anc 1271 . . . 4  |-  ( ph  ->  (iEdg `  S )  =  (.ef `  S )
)
11 grstructd.e . . . 4  |-  ( ph  ->  (.ef `  S )  =  E )
1210, 11eqtrd 2262 . . 3  |-  ( ph  ->  (iEdg `  S )  =  E )
138, 12jca 306 . 2  |-  ( ph  ->  ( (Vtx `  S
)  =  V  /\  (iEdg `  S )  =  E ) )
14 nfcv 2372 . . 3  |-  F/_ g S
15 nfv 1574 . . . 4  |-  F/ g ( (Vtx `  S
)  =  V  /\  (iEdg `  S )  =  E )
16 nfsbc1v 3047 . . . 4  |-  F/ g
[. S  /  g ]. ps
1715, 16nfim 1618 . . 3  |-  F/ g ( ( (Vtx `  S )  =  V  /\  (iEdg `  S
)  =  E )  ->  [. S  /  g ]. ps )
18 fveqeq2 5635 . . . . 5  |-  ( g  =  S  ->  (
(Vtx `  g )  =  V  <->  (Vtx `  S )  =  V ) )
19 fveqeq2 5635 . . . . 5  |-  ( g  =  S  ->  (
(iEdg `  g )  =  E  <->  (iEdg `  S )  =  E ) )
2018, 19anbi12d 473 . . . 4  |-  ( g  =  S  ->  (
( (Vtx `  g
)  =  V  /\  (iEdg `  g )  =  E )  <->  ( (Vtx `  S )  =  V  /\  (iEdg `  S
)  =  E ) ) )
21 sbceq1a 3038 . . . 4  |-  ( g  =  S  ->  ( ps 
<-> 
[. S  /  g ]. ps ) )
2220, 21imbi12d 234 . . 3  |-  ( g  =  S  ->  (
( ( (Vtx `  g )  =  V  /\  (iEdg `  g
)  =  E )  ->  ps )  <->  ( (
(Vtx `  S )  =  V  /\  (iEdg `  S )  =  E )  ->  [. S  / 
g ]. ps ) ) )
2314, 17, 22spcgf 2885 . 2  |-  ( S  e.  X  ->  ( A. g ( ( (Vtx
`  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )  ->  ( ( (Vtx `  S )  =  V  /\  (iEdg `  S
)  =  E )  ->  [. S  /  g ]. ps ) ) )
241, 2, 13, 23syl3c 63 1  |-  ( ph  ->  [. S  /  g ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1393    = wceq 1395    e. wcel 2200   [.wsbc 3028    \ cdif 3194   (/)c0 3491   {csn 3666   class class class wbr 4082   dom cdm 4718   Fun wfun 5311   ` cfv 5317   2oc2o 6554    ~<_ cdom 6884   Basecbs 13027  .efcedgf 15799  Vtxcvtx 15807  iEdgciedg 15808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-dom 6887  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810
This theorem is referenced by:  grstructeld2dom  15845
  Copyright terms: Public domain W3C validator