ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  grstructd2dom Unicode version

Theorem grstructd2dom 15722
Description: If any representation of a graph with vertices  V and edges  E has a certain property  ps, then any structure with base set  V and value  E in the slot for edge functions (which is such a representation of a graph with vertices  V and edges  E) has this property. (Contributed by AV, 12-Oct-2020.) (Revised by AV, 9-Jun-2021.)
Hypotheses
Ref Expression
gropd.g  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
gropd.v  |-  ( ph  ->  V  e.  U )
gropd.e  |-  ( ph  ->  E  e.  W )
grstructd.s  |-  ( ph  ->  S  e.  X )
grstructd.f  |-  ( ph  ->  Fun  ( S  \  { (/) } ) )
grstructd2dom.d  |-  ( ph  ->  2o  ~<_  dom  S )
grstructd.b  |-  ( ph  ->  ( Base `  S
)  =  V )
grstructd.e  |-  ( ph  ->  (.ef `  S )  =  E )
Assertion
Ref Expression
grstructd2dom  |-  ( ph  ->  [. S  /  g ]. ps )
Distinct variable groups:    g, E    g, V    ph, g    S, g
Allowed substitution hints:    ps( g)    U( g)    W( g)    X( g)

Proof of Theorem grstructd2dom
StepHypRef Expression
1 grstructd.s . 2  |-  ( ph  ->  S  e.  X )
2 gropd.g . 2  |-  ( ph  ->  A. g ( ( (Vtx `  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )
)
3 grstructd.f . . . . 5  |-  ( ph  ->  Fun  ( S  \  { (/) } ) )
4 grstructd2dom.d . . . . 5  |-  ( ph  ->  2o  ~<_  dom  S )
5 funvtxdm2domval 15703 . . . . 5  |-  ( ( S  e.  X  /\  Fun  ( S  \  { (/)
} )  /\  2o  ~<_  dom  S )  ->  (Vtx `  S )  =  (
Base `  S )
)
61, 3, 4, 5syl3anc 1250 . . . 4  |-  ( ph  ->  (Vtx `  S )  =  ( Base `  S
) )
7 grstructd.b . . . 4  |-  ( ph  ->  ( Base `  S
)  =  V )
86, 7eqtrd 2239 . . 3  |-  ( ph  ->  (Vtx `  S )  =  V )
9 funiedgdm2domval 15704 . . . . 5  |-  ( ( S  e.  X  /\  Fun  ( S  \  { (/)
} )  /\  2o  ~<_  dom  S )  ->  (iEdg `  S )  =  (.ef
`  S ) )
101, 3, 4, 9syl3anc 1250 . . . 4  |-  ( ph  ->  (iEdg `  S )  =  (.ef `  S )
)
11 grstructd.e . . . 4  |-  ( ph  ->  (.ef `  S )  =  E )
1210, 11eqtrd 2239 . . 3  |-  ( ph  ->  (iEdg `  S )  =  E )
138, 12jca 306 . 2  |-  ( ph  ->  ( (Vtx `  S
)  =  V  /\  (iEdg `  S )  =  E ) )
14 nfcv 2349 . . 3  |-  F/_ g S
15 nfv 1552 . . . 4  |-  F/ g ( (Vtx `  S
)  =  V  /\  (iEdg `  S )  =  E )
16 nfsbc1v 3021 . . . 4  |-  F/ g
[. S  /  g ]. ps
1715, 16nfim 1596 . . 3  |-  F/ g ( ( (Vtx `  S )  =  V  /\  (iEdg `  S
)  =  E )  ->  [. S  /  g ]. ps )
18 fveqeq2 5598 . . . . 5  |-  ( g  =  S  ->  (
(Vtx `  g )  =  V  <->  (Vtx `  S )  =  V ) )
19 fveqeq2 5598 . . . . 5  |-  ( g  =  S  ->  (
(iEdg `  g )  =  E  <->  (iEdg `  S )  =  E ) )
2018, 19anbi12d 473 . . . 4  |-  ( g  =  S  ->  (
( (Vtx `  g
)  =  V  /\  (iEdg `  g )  =  E )  <->  ( (Vtx `  S )  =  V  /\  (iEdg `  S
)  =  E ) ) )
21 sbceq1a 3012 . . . 4  |-  ( g  =  S  ->  ( ps 
<-> 
[. S  /  g ]. ps ) )
2220, 21imbi12d 234 . . 3  |-  ( g  =  S  ->  (
( ( (Vtx `  g )  =  V  /\  (iEdg `  g
)  =  E )  ->  ps )  <->  ( (
(Vtx `  S )  =  V  /\  (iEdg `  S )  =  E )  ->  [. S  / 
g ]. ps ) ) )
2314, 17, 22spcgf 2859 . 2  |-  ( S  e.  X  ->  ( A. g ( ( (Vtx
`  g )  =  V  /\  (iEdg `  g )  =  E )  ->  ps )  ->  ( ( (Vtx `  S )  =  V  /\  (iEdg `  S
)  =  E )  ->  [. S  /  g ]. ps ) ) )
241, 2, 13, 23syl3c 63 1  |-  ( ph  ->  [. S  /  g ]. ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104   A.wal 1371    = wceq 1373    e. wcel 2177   [.wsbc 3002    \ cdif 3167   (/)c0 3464   {csn 3638   class class class wbr 4051   dom cdm 4683   Fun wfun 5274   ` cfv 5280   2oc2o 6509    ~<_ cdom 6839   Basecbs 12907  .efcedgf 15678  Vtxcvtx 15686  iEdgciedg 15687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-mulcom 8046  ax-addass 8047  ax-mulass 8048  ax-distr 8049  ax-i2m1 8050  ax-1rid 8052  ax-0id 8053  ax-rnegex 8054  ax-cnre 8056
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-suc 4426  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-1st 6239  df-2nd 6240  df-1o 6515  df-2o 6516  df-dom 6842  df-sub 8265  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-9 9122  df-n0 9316  df-dec 9525  df-ndx 12910  df-slot 12911  df-base 12913  df-edgf 15679  df-vtx 15688  df-iedg 15689
This theorem is referenced by:  grstructeld2dom  15724
  Copyright terms: Public domain W3C validator