ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2 GIF version

Theorem fvconst2 5781
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.)
Hypothesis
Ref Expression
fvconst2.1 𝐵 ∈ V
Assertion
Ref Expression
fvconst2 (𝐶𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵)

Proof of Theorem fvconst2
StepHypRef Expression
1 fvconst2.1 . 2 𝐵 ∈ V
2 fvconst2g 5779 . 2 ((𝐵 ∈ V ∧ 𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
31, 2mpan 424 1 (𝐶𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364  wcel 2167  Vcvv 2763  {csn 3623   × cxp 4662  cfv 5259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267
This theorem is referenced by:  ovconst2  6079  mapsncnv  6763  0ct  7182  infnninfOLD  7200  exmidomni  7217  ser0f  10645  fser0const  10646  iserge0  11527  sum0  11572  isumz  11573  prodf1f  11727  fprodntrivap  11768  prod1dc  11770  0nninf  15759  nninfnfiinf  15778
  Copyright terms: Public domain W3C validator