ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvconst2 GIF version

Theorem fvconst2 5848
Description: The value of a constant function. (Contributed by NM, 16-Apr-2005.)
Hypothesis
Ref Expression
fvconst2.1 𝐵 ∈ V
Assertion
Ref Expression
fvconst2 (𝐶𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵)

Proof of Theorem fvconst2
StepHypRef Expression
1 fvconst2.1 . 2 𝐵 ∈ V
2 fvconst2g 5846 . 2 ((𝐵 ∈ V ∧ 𝐶𝐴) → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
31, 2mpan 424 1 (𝐶𝐴 → ((𝐴 × {𝐵})‘𝐶) = 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  {csn 3666   × cxp 4714  cfv 5314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-fv 5322
This theorem is referenced by:  ovconst2  6148  mapsncnv  6832  0ct  7262  infnninfOLD  7280  exmidomni  7297  ser0f  10743  fser0const  10744  iserge0  11840  sum0  11885  isumz  11886  prodf1f  12040  fprodntrivap  12081  prod1dc  12083  0nninf  16301  nninfnfiinf  16320
  Copyright terms: Public domain W3C validator